Вопрос задан 20.06.2023 в 16:07. Предмет Геометрия. Спрашивает Хрол Лёня.

На стороне ВС ромба ABCD лежит точка К так, что ВК = КС, О — точка пересечения диагоналей. Выразите

векторы АО, АК, KD через векторы a = АВ и b = AD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Королевская Молдир.

Решение:

АО = 1/2 АС = 1/2 (АВ+ВС) = 1/2 (a+b) = (a+b)/2

AK = AB+BK = a+b/2

KD = KA+AD = -AK+AD = -(a+b/2) + b = -a-b/

2+b = -a + b/2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, заметим, что ВС - медиана ромба abcd, так как ВК = КС, следовательно, точка К делит диагональ ВС пополам.

Также, О является точкой пересечения диагоналей, а значит, О является точкой пересечения медиан ромба abcd.

Теперь рассмотрим векторы:

1. Вектор АО:

Вектор АО можно выразить как сумму векторов АК и КО: АО = АК + КО

2. Вектор АК:

Так как К делит диагональ ВС пополам, то КС = ВК, а значит, АК = АВ - ВК

3. Вектор КО:

Так как К делит диагональ ВС пополам, то ВК = КС, а значит, КО = 1/2 * ВС

4. Вектор kd:

Вектор kd можно выразить через векторы a = АВ и b = ad: kd = a - b

Таким образом, мы можем выразить векторы АО, АК и kd через векторы a и b:

АО = (АВ - ВК) + 1/2 * ВС

АК = АВ - ВК

kd = a - b

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос