Вопрос задан 18.06.2023 в 15:38. Предмет Геометрия. Спрашивает Пынзару Сергей.

Срочно .Соответствующие стороны двух одинаковых треугольников равны 3 см и 5 см. Площадь первого

треугольника 27 см². Найдите площадь второго треугольника.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Курбанов Мурад.

Ответ:

75 см²

Объяснение:

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

k²=(3/5)²=0,36

Пусть  S₂=x см²

Тогда 27/х=0,36

0,36х=27

х=75

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти площадь второго треугольника, нужно знать его высоту.

По условию задачи, стороны двух треугольников равны 3 см и 5 см.

Площадь треугольника можно найти по формуле: S = 0.5 * a * h, где S - площадь, a - одна из сторон треугольника, h - высота.

Пусть h1 - высота первого треугольника. Зная сторону a = 3 см и площадь S1 = 27 см², можем выразить высоту h1:

27 = 0.5 * 3 * h1 54 = 3 * h1 h1 = 54 / 3 h1 = 18 см

Теперь, зная высоту первого треугольника, можно найти высоту второго треугольника. По свойству подобных фигур, отношение высот двух подобных треугольников равно отношению длин соответствующих сторон:

h2 / h1 = a2 / a1

Подставляя значения, получим:

h2 / 18 = 5 / 3

Умножим обе части равенства на 18:

h2 = (5 / 3) * 18 h2 = 30 см

Теперь, зная сторону a2 = 5 см и высоту h2 = 30 см второго треугольника, можем найти его площадь:

S2 = 0.5 * 5 * 30 S2 = 75 см²

Таким образом, площадь второго треугольника равна 75 см².

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос