Вопрос задан 17.06.2023 в 19:31. Предмет Геометрия. Спрашивает Линник Кирилл.

8 класс с рисунком прошу Смежные стороны параллелограмма равны 12 см и 20 см, а один из его углов

равен 30°. Найдите площадь параллелограмма.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маньков Максим.

Ответ:

120см²

Объяснение:

АВ=12см

АD=20см

<А=30°

S(ABCD)=AB*AD*sin<A

sin30°=1/2

S(ABCD)=12*20*1/2=120см²

____________

Решение 2:

∆АВН- прямоугольный треугольник

ВН- катет против угла 30°

ВН=АВ/2=12/2=6см.

S(ABCD)=BH*AD=6*20=120см²



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти площадь параллелограмма, нужно воспользоваться формулой:

\[ S = a \cdot h, \]

где \( a \) - длина основы (одной из смежных сторон параллелограмма), а \( h \) - высота, проведенная к этой основе. В данном случае у нас есть две смежные стороны \( a = 12 \, \text{см} \) и \( b = 20 \, \text{см} \), а также угол между ними \( \alpha = 30^\circ \).

Для нахождения высоты \( h \) можно воспользоваться формулой для площади параллелограмма через длины сторон и угол между ними:

\[ S = a \cdot b \cdot \sin(\alpha). \]

Теперь мы можем решить уравнение для высоты \( h \):

\[ h = \frac{S}{a \cdot \sin(\alpha)}. \]

Подставим известные значения:

\[ h = \frac{12 \cdot 20 \cdot \sin(30^\circ)}{12 \cdot \sin(30^\circ)} = 20 \cdot \sin(30^\circ) = 20 \cdot \frac{1}{2} = 10 \, \text{см}. \]

Теперь, когда у нас есть высота \( h \), мы можем найти площадь параллелограмма:

\[ S = a \cdot h = 12 \cdot 10 = 120 \, \text{см}^2. \]

Таким образом, площадь параллелограмма равна \( 120 \, \text{см}^2 \).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос