Вопрос задан 16.06.2023 в 00:56. Предмет Геометрия. Спрашивает Нефёдов Максим.

4. Два угла треугольника равны 40° и 80°. Найдите угол между биссектрисами этих УГЛОВ.СРОЧНО ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гура Коля.
Зай, если я правильно понял задание
То ответ в фотке
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я могу помочь с этой задачей. Давайте начнем с того, что биссектриса угла - это линия, которая делит угол на две равные части. Угол между биссектрисами двух углов можно найти, используя свойство биссектрисы.

Нахождение угла между биссектрисами

Для начала найдем угол между биссектрисами угла. По свойству биссектрисы, угол между биссектрисами равен половине разницы между углами, на которые биссектрисы направлены.

Для данной задачи у нас есть два угла: 40° и 80°. Пусть A и B - вершины угла, C - точка пересечения биссектрис, и D и E - точки, в которых биссектрисы пересекают сторону угла.

Используем формулу для нахождения угла между биссектрисами: Угол между биссектрисами = 1/2 * |Угол1 - Угол2| где |x| обозначает модуль числа x.

Решение

1. Найдем угол между биссектрисами угла с углами 40° и 80°: Угол между биссектрисами = 1/2 * |40° - 80°| = 1/2 * |-40°| = 20°

Ответ: Угол между биссектрисами этих углов равен 20°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос