
2. Периметр параллелограмма равен 60 см. Разность двух его углов равна 60°, а разность двух его
сторон — 4 см. Найдите площадь параллелограмма. - пж памогите сор 

Ответы на вопрос

Ответ:
х-одна сторона параллелограмма
у - другая сторона
{ 2(х+у)=60
х-у= 4; х=4+у
Подставим в первое уравнение:2(4+у+у)=60
4у+ 8=60; 4(у+2)=60; у+2=15; у=13
х=4+13=17
х=13; у=17
α- один угол
β- другой
{2(α+β)=360
α-β=60; α=60+β;
2(60+β+β)=360; 60+2β=180; 2β=180-60; 2β=120
β=60°, α=120°
S=xySin60°; S=17•13•Sin60°; S=221√3/2
Ответ: Площадь параллелограммаравна 221√3/2см²или приблизительно 191см²



Given Information:
We are given the following information about a parallelogram: - The perimeter of the parallelogram is 60 cm. - The difference between two of its angles is 60°. - The difference between two of its sides is 4 cm.Solution:
To find the area of the parallelogram, we need to use the given information and apply relevant formulas.Let's denote the length of one side of the parallelogram as a and the length of the adjacent side as b. The formula for the perimeter of a parallelogram is:
Perimeter = 2(a + b)
From the given information, we know that the perimeter is 60 cm. Therefore, we can write the equation:
60 = 2(a + b)
Simplifying the equation, we get:
a + b = 30 ---(Equation 1)
Next, let's consider the difference between two angles of the parallelogram. The opposite angles of a parallelogram are equal. Therefore, if we denote one angle as x, the other angle will be x + 60°. The sum of the angles of a parallelogram is 360°. So, we can write the equation:
x + (x + 60°) + x + (x + 60°) = 360°
Simplifying the equation, we get:
4x + 120° = 360°
Subtracting 120° from both sides, we get:
4x = 240°
Dividing both sides by 4, we get:
x = 60°
Therefore, one angle of the parallelogram is 60°.
Now, let's consider the difference between two sides of the parallelogram. We are given that the difference is 4 cm. Therefore, we can write the equation:
a - b = 4 ---(Equation 2)
We now have two equations (Equation 1 and Equation 2) with two variables (a and b). We can solve these equations simultaneously to find the values of a and b.
Solving Equation 1 and Equation 2 simultaneously, we get:
a = 17 and b = 13
Now that we have the values of a and b, we can calculate the area of the parallelogram using the formula:
Area = base × height
In a parallelogram, the base is one of the sides, and the height is the perpendicular distance between the base and the opposite side.
Since the opposite sides of a parallelogram are parallel, the height is the same as the length of the side perpendicular to the base. Therefore, the height of the parallelogram is b = 13 cm.
Using the formula for the area, we have:
Area = a × b = 17 cm × 13 cm = 221 cm²
Therefore, the area of the parallelogram is 221 cm².


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili