
Меньшая сторона прямоугольника равна 34, диагонали пересекаются под углом 60 градусов, найдите
диагонали

Ответы на вопрос

Ответ: смотри фото
Объяснение:




Для решения этой задачи мы можем использовать теорему косинусов.
Обозначим одну из диагоналей прямоугольника как d1, а другую - d2. Пусть a - меньшая сторона прямоугольника, а b - большая сторона.
Из условия задачи известно, что a = 34.
Также нам дано, что диагонали пересекаются под углом 60 градусов. Воспользуемся теоремой косинусов для нахождения диагоналей.
В прямоугольнике угол между диагоналями равен 90 градусов, так как диагонали являются его диагоналями, а все углы прямоугольника равны 90 градусам.
Теперь, применяя теорему косинусов к треугольнику, образованному диагоналями и меньшей стороной прямоугольника, получаем:
d1^2 = a^2 + b^2 - 2ab * cos(90°)
d2^2 = a^2 + b^2 - 2ab * cos(60°)
В данном случае угол между диагоналями равен 60 градусам.
Используя известное значение a = 34, мы можем решить систему уравнений и найти значения диагоналей d1 и d2:
d1^2 = 34^2 + b^2 - 2 * 34 * b * cos(90°) d2^2 = 34^2 + b^2 - 2 * 34 * b * cos(60°)
После решения этой системы уравнений мы найдем значения диагоналей d1 и d2.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili