Вопрос задан 19.03.2021 в 17:13. Предмет Геометрия. Спрашивает Когтев Максим.

Медианы ВМ и СN треугольника АВС пересекаются в точке К. Найдите площадь треугольника ВКN, если

площадь треугольника АВС равна 24.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Липовой Андрей.
Медиана делит треугольник на 2 равновеликих треугольника.
Площадь тр-ка BNC =24/2=12
Медианы треугольника делятся точкой пересечения медиан в отношении 2:1, считая от вершины⇒CK:KN=2:1
Треугольники  BKN и BKC имеют одну и ту же высоту. Значит отношение их площадей равно отношению оснований NK и KC.
CK:KN=2:1⇒NK:KC=1:2
Это означает, что площадь тр-ка BKC в 2 раза больше площади тр-ка BKN.
Пусть Sbkn=x⇒Sbkc=2x
Sbkn+Sbkc=Sbnc⇒x+2x=12⇒3x=12⇒x=4
Ответ: Sbkn=4
 





0 0
Отвечает Ларионова Мэри.
Медиана делит треугольник на 2 равновеликих
S(CBN)=S(ABC)/2=24/2=12
Отрезок медианы ВК делит треугольник BCN на треугольник BKN и треугольник BKC имеющих общую высоту и CKбольше NK в 2 раза (медианы в точке пересечения делятся в отношении 2:1 от вершины).
S(BKC)=2S(BKN)
S(BCN)=S(BKN)+S(BKC)=3S(BRN)=12
S(BKN)=4
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам понадобится следующая теорема: "Медиана треугольника делит его на две равные по площади части".

Таким образом, площадь треугольника ВКН равна половине площади треугольника АВС. Площадь треугольника АВС равна 24, следовательно, площадь треугольника ВКН будет равна 24/2 = 12.

Таким образом, площадь треугольника ВКН равна 12.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос