Вопрос задан 14.02.2021 в 05:56. Предмет Геометрия. Спрашивает Сидорова Екатерина.

№24. Высота прямоугольного треугольника, опущенная на гипотенузу, образует с одним из катетов угол

550. Найдите острые углы этого треугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванченко Вита.
Попробуй,может быть так?

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи воспользуемся свойствами прямоугольного треугольника. Пусть гипотенуза треугольника равна H, а катеты равны A и B.

Угол между высотой, опущенной на гипотенузу, и одним из катетов равен 550. Так как сумма углов треугольника равна 180 градусам, то угол между гипотенузой и другим катетом будет равен 180 - 550 = 130 градусам.

Теперь мы можем использовать тригонометрию, чтобы найти острые углы треугольника. Угол α можно найти, используя тангенс угла α:

tan(α) = A / H

Отсюда:

α = arctan(A / H)

Угол β можно найти, используя тангенс угла β:

tan(β) = B / H

Отсюда:

β = arctan(B / H)

Таким образом, чтобы найти острые углы треугольника, необходимо знать значения катетов A и B и гипотенузы H.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос