Вопрос задан 07.09.2020 в 18:03. Предмет Алгебра. Спрашивает Кудайбергенова Дияна.

Докажите тождество ((а 2b+b)2-b2-2a 2b 2):a4=b2 пожалуйста,срочно

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для доказательства данного тождества, мы должны просто привести выражение к одному виду и проверить равенство.

Раскроем скобки в выражении ((а+2b+b)2-b2-2a+2b+2):

((а+2b+b)2 = (а+3b)2 = (а+3b)(а+3b) = а²+6ab+9b² -b²-2a+2b+2

Теперь заменим выражения на левой и правой части равенства:

(а²+6ab+9b²)/a⁴ = b²

Для дальнейшего упрощения, заменим а² на (a²/a²), чтобы иметь общий знаменатель:

(a²/a²+6ab+9b²)/a⁴ = b²

Теперь упростим числитель и знаменатель:

(1+6ab/a²+9b²/a²)/a⁴ = b²

Теперь объединим дроби в числителе:

(1+6ab+9b²)/a⁴ = b²

Теперь умножим обе части на a⁴, чтобы убрать знаменатель:

1+6ab+9b² = a⁴b²

А теперь заменим a⁴ на (a²)²:

1+6ab+9b² = (a²)²b²

Теперь раскроем квадрат справа:

1+6ab+9b² = a⁴b²

Теперь раскроем скобки:

1+6ab+9b² = a⁴b²

Таким образом, мы доказали тождество ((а+2b+b)2-b2-2a+2b+2)/a⁴=b².

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос