
Геометрическая прогрессия. Нужно найти b5, S4. b2=15 , b3=25!!! помогите


Ответы на вопрос

Geometric Progression
A geometric progression is a sequence of numbers in which each term after the first is found by multiplying the previous term by a fixed, non-zero number called the common ratio. The general form of a geometric progression is:
a, ar, ar^2, ar^3, ar^4, ...
Where: - a is the first term - r is the common ratio
To find the value of b5 in the geometric progression, we need to know the values of b2 and b3. In this case, b2 = 15 and b3 = 25.
To find the common ratio r, we can use the formula:
r = b3 / b2
Substituting the given values, we have:
r = 25 / 15
Simplifying, we find that r = 5/3.
Now, we can find the value of b5 using the formula:
b5 = b2 * r^3
Substituting the values we have:
b5 = 15 * (5/3)^3
Calculating this expression, we find that b5 ≈ 125.
Sum of the First Four Terms (S4)
To find the sum of the first four terms (S4) in the geometric progression, we can use the formula:
S4 = a * (1 - r^4) / (1 - r)
Substituting the values we have:
S4 = 15 * (1 - (5/3)^4) / (1 - 5/3)
Calculating this expression, we find that S4 ≈ 171.67.
Therefore, in the given geometric progression, b5 ≈ 125 and S4 ≈ 171.67.
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili