Вопрос задан 01.09.2020 в 07:57. Предмет Алгебра. Спрашивает Лис Милана.

Вычислите значение выражения (625^(-cosπ/12 ))^sin13π/12    

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления значения данного выражения, нам необходимо использовать знания из тригонометрии и алгебры. Давайте разберемся по шагам.

Шаг 1: Расчет значений внутри скобок Внутри первой скобки у нас есть выражение `cos(π/12)`. Мы можем вычислить это значение, используя тригонометрическую функцию косинуса. Значение `π/12` составляет 15 градусов.

Расчет: `cos(π/12) ≈ 0.9659258262890683`

Шаг 2: Расчет значения степени Теперь у нас есть значение `cos(π/12)`, которое мы можем использовать в качестве основания степени. Основание степени равно `cos(π/12)`, а показатель степени равен `sin(13π/12)`. Мы также можем вычислить значение `sin(13π/12)`.

Расчет: `sin(13π/12) ≈ -0.9659258262890683`

Шаг 3: Вычисление значений степени Теперь мы можем подставить значения степеней и вычислить их результат.

Расчет: `cos(π/12)^sin(13π/12) ≈ 0.9659258262890683^(-0.9659258262890683) ≈ 0.7270308160218819`

Шаг 4: Вычисление значения итогового выражения Теперь у нас есть значение степени, которое мы можем использовать для вычисления итогового значения выражения.

Расчет: `625^(0.7270308160218819) ≈ 32.6544865169462`

Таким образом, значение выражения `(625^(-cos(π/12)))^sin(13π/12)` примерно равно 32.6544865169462.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос