Вопрос задан 28.06.2020 в 07:12. Предмет Алгебра. Спрашивает Суворов Денис.

2. Сторона основания правильной четырехугольной призмы равна а . Диагональ призмы наклонена к

плоскости боковой грани под углом 300. Найти высоту призмы и угол наклона диагонали призмы к плоскости основания.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жайнак Гаухар.

Сторона основания правильной четырехугольной призмы равна а .
Диагональ призмы наклонена к плоскости боковой грани под углом 30°

Найти высоту призмы и угол наклона диагонали призмы к плоскости основания.

 

Ясно, что угол  наклона диагонали к плоскости боковой грани  равен 30°.
Сделаем и смотрим рисунок.
ВС- высота призмы.
АВ- ее диагональ.
ВЕ- диагональ боковой грани.
АЕ=ЕС= а - стороны основания.
Призма правильная. Значит, в основании - квадрат.
Угол АВЕ=30°
Диагональ основания АС= а√2 по формуле диагонали квадрата.
Диагональ АВ призмы = АЕ:sin (30°)=2a
Диагональ ВЕ боковой грани=АЕ:tg(30°)=а:(1/√3)=а√3
Высота ВС= h призмы по т.Пифагора
h²=(а√3)²-а²=2а²
h=а√2
Треугольник АВС - прямоугольный, в котором катеты АС=ВС.
Отсюда угол  угол наклона диагонали призмы к плоскости основания 

∠ ВАС=45°


0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос