
Вопрос задан 02.05.2020 в 15:31.
Предмет Алгебра.
Спрашивает Досмагулов Диас.
найдите все многочлены Р(х) удовлетворяющие тождеству хР(х-1)=(х-2)Р(х)


Ответы на вопрос

Отвечает Свіжинський Степан.
C даного равенства следует, что х=0 и х=1 будут корнями искомого многочлена. Поєтому Р(х) имеет вид P(x)=x(x-1)Q(x), где - Q(x) некоторый многочлен. Подставив это в данное равенство, получим
xР(х-1)=(х-2)Р(х);
x *(x-1)(x-1-1)Q(x-1)=(x-2)x(x-1)Q(x);
x(x-1)(x-2)Q(x-1)=x(x-1)(x-2)Q(x);
т.е.получили что Q(x-1)=Q(x). Отсюда имеем что Q(0)=Q(1)=Q(2)=...., поэтому Q(x) - есть просто сталой.
Далее. Рассмотрим полученный ответ P(x)=ax(x-1), a є R. Сделаем проверку.
x* a(x-1)(x-2)=(x-2) ax(x-1)
а значит любой многочлен P(x)=ax(x-1), a є R удовлетворяет данное равенство


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili