Вопрос задан 02.05.2020 в 15:31. Предмет Алгебра. Спрашивает Досмагулов Диас.

найдите все многочлены Р(х) удовлетворяющие тождеству хР(х-1)=(х-2)Р(х)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Свіжинський Степан.

C даного равенства следует, что х=0 и х=1 будут корнями искомого многочлена. Поєтому Р(х) имеет вид P(x)=x(x-1)Q(x), где - Q(x) некоторый многочлен. Подставив это в данное равенство, получим

xР(х-1)=(х-2)Р(х);

x *(x-1)(x-1-1)Q(x-1)=(x-2)x(x-1)Q(x);

x(x-1)(x-2)Q(x-1)=x(x-1)(x-2)Q(x);

т.е.получили что Q(x-1)=Q(x). Отсюда имеем что Q(0)=Q(1)=Q(2)=...., поэтому Q(x) - есть просто сталой.

Далее. Рассмотрим полученный ответ P(x)=ax(x-1), a є R. Сделаем проверку.

 

x* a(x-1)(x-2)=(x-2) ax(x-1)

а значит любой многочлен P(x)=ax(x-1), a є R удовлетворяет данное равенство

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос