
Вопрос задан 22.01.2020 в 22:39.
Предмет Алгебра.
Спрашивает Чернова Даша.
Докажите, что любой многочлен можно представить в виде суммы чётной и нечётной функции.


Ответы на вопрос

Отвечает Петров Дима.
1. Если не лезть в дебри, то рассмотрим такой многочлен:
,
где
- коэффициент
Пусть n чётно, т.е. n = 2k. (Для нечётного n доказательство аналогичное). Сгруппируем члены с чётными и нечётными степенями:

Рассмотрим многочлен g(x) с чётными степенями. Т.к. любое число в чётное степени положительно, то:

Покажем, что g(x) функция чётная. Для этого, вместо х подставим (-х):

Итак, доказали, что функция g(x)=g(-x) чётная.
Рассмотрим многочлен h(x) с нечётными степенями. Отрицательное число в нечётной степени отрицательно.

Покажем, что функция h(x) нечётная, для чего вместо х подставим (-х):

Итак, доказали, что функция h(x)=-h(-x) нечётная.
После всего сказанного, имеем:
f(x) = g(x) + h(x)
функция f(x) представима в виде суммы чётной g(x) и нечётной h(x) функций.
2. А теперь углубимся в дебри. Если функция симметрична относительно начала координат, то её можно представить в виде суммы чётной и нечётной функций.
Запишем нашу функцию в таком виде:

В правильности такой записи легко убедиться, если в правой части произвести сложение.
Рассмотрим функцию:

Выясним, чётная или нет такая функция, для чего опять подставляем вместо икса минус икс:

Функция g(x) чётная.
Рассмотрим функцию:

и выясним её чётность.

Функция h(x) нечётная.
Таким образом,
, где g(x) - чётная, а h(x) - нечётная функция.
Что и требовалось доказать.
* Более подробно см. соответствующий материал, а для 9 класса достаточно этого.
где
Пусть n чётно, т.е. n = 2k. (Для нечётного n доказательство аналогичное). Сгруппируем члены с чётными и нечётными степенями:
Рассмотрим многочлен g(x) с чётными степенями. Т.к. любое число в чётное степени положительно, то:
Покажем, что g(x) функция чётная. Для этого, вместо х подставим (-х):
Итак, доказали, что функция g(x)=g(-x) чётная.
Рассмотрим многочлен h(x) с нечётными степенями. Отрицательное число в нечётной степени отрицательно.
Покажем, что функция h(x) нечётная, для чего вместо х подставим (-х):
Итак, доказали, что функция h(x)=-h(-x) нечётная.
После всего сказанного, имеем:
f(x) = g(x) + h(x)
функция f(x) представима в виде суммы чётной g(x) и нечётной h(x) функций.
2. А теперь углубимся в дебри. Если функция симметрична относительно начала координат, то её можно представить в виде суммы чётной и нечётной функций.
Запишем нашу функцию в таком виде:
В правильности такой записи легко убедиться, если в правой части произвести сложение.
Рассмотрим функцию:
Выясним, чётная или нет такая функция, для чего опять подставляем вместо икса минус икс:
Функция g(x) чётная.
Рассмотрим функцию:
и выясним её чётность.
Функция h(x) нечётная.
Таким образом,
Что и требовалось доказать.
* Более подробно см. соответствующий материал, а для 9 класса достаточно этого.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili