
Периметр прямокутника 46 см . діагональ дорівнює 17 см . знайти сторони прямокутника


Ответы на вопрос




Finding the Sides of a Rectangle Given the Perimeter and Diagonal
To find the sides of a rectangle when the perimeter and diagonal are given, we can use the following steps:
1. Let's assume the length of the rectangle is a and the width is b. 2. The perimeter of a rectangle is given by the formula: Perimeter = 2(a + b). 3. We are given that the perimeter is 46 cm, so we can write the equation: 46 = 2(a + b).
Now, let's find the value of b in terms of a using the given diagonal.
4. The diagonal of a rectangle can be found using the Pythagorean theorem: Diagonal = sqrt(a^2 + b^2). 5. We are given that the diagonal is 17 cm, so we can write the equation: 17 = sqrt(a^2 + b^2).
By solving these two equations simultaneously, we can find the values of a and b.
Let's solve the equations:
From equation 1: 46 = 2(a + b), we can simplify it to: 23 = a + b. (Equation 1)
From equation 2: 17 = sqrt(a^2 + b^2), we can square both sides to eliminate the square root: 289 = a^2 + b^2. (Equation 2)
Now, we can solve these equations simultaneously.
Substitute equation 1 into equation 2:
289 = a^2 + (23 - a)^2
Simplifying the equation:
289 = a^2 + 529 - 46a + a^2
Combining like terms:
2a^2 - 46a + 240 = 0
Now, we can solve this quadratic equation to find the values of a and b.
Using the quadratic formula: a = (-b ± sqrt(b^2 - 4ac)) / (2a), where a = 2, b = -46, and c = 240.
Calculating the discriminant: b^2 - 4ac = (-46)^2 - 4(2)(240) = 2116 - 1920 = 196.
Since the discriminant is positive, we have two real solutions.
Using the quadratic formula:
a = (-(-46) ± sqrt(196)) / (2(2))
Simplifying:
a = (46 ± 14) / 4
This gives us two possible values for a:
1. When a = (46 + 14) / 4 = 60 / 4 = 15 2. When a = (46 - 14) / 4 = 32 / 4 = 8
Now, we can substitute these values of a into equation 1 to find the corresponding values of b.
For a = 15: 23 = 15 + b b = 23 - 15 = 8
For a = 8: 23 = 8 + b b = 23 - 8 = 15
Therefore, the sides of the rectangle can be either 15 cm x 8 cm or 8 cm x 15 cm.
Please note that the given search results did not provide a direct answer to the question. The solution provided above is based on the standard method of finding the sides of a rectangle given the perimeter and diagonal.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili