Вопрос задан 12.01.2020 в 12:47. Предмет Алгебра. Спрашивает Шапран Макс.

Одна корова съедает в день в среднем около девяти целых одной шестой кг сена. Какое максимальное

количество коров сможет получить нужную порцию сена, если имеется всего 250 кг сена? Второе число составляет 30% первого, а третье – 40% второго. Сколько процентов от первого числа составляет третье?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дулисова Стася.
250:9 1/6=250:55/6=250*6/55=50*6/11=300/11≈27 коров

х-первое число
х*30/100=0,3х-второе число
0,3х*40/100=0,3х*0,4=0,12х

0,12х/х*100=0,12*100=12% составляет третье число от первого
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Maximum Number of Cows

To calculate the maximum number of cows that can receive the necessary portion of hay, we need to follow the given information:

- One cow consumes approximately 9/6 kg of hay per day. - There is a total of 250 kg of hay available. - The second number is 30% of the first number. - The third number is 40% of the second number.

Let's break down the problem step by step:

1. Calculate the second number: - The second number is 30% of the first number. - Let's assume the first number is x. - The second number is 30% of x, which can be written as 0.3x.

2. Calculate the third number: - The third number is 40% of the second number. - The second number is 0.3x. - The third number is 40% of 0.3x, which can be written as 0.4 * 0.3x.

3. Calculate the total amount of hay consumed by all the cows: - The total amount of hay consumed by one cow is 9/6 kg per day. - The total amount of hay consumed by x cows is (9/6) * x kg per day.

4. Set up an equation to find the maximum number of cows: - The total amount of hay consumed by x cows should be equal to the available hay, which is 250 kg. - (9/6) * x = 250

Now, let's solve the equation to find the maximum number of cows that can receive the necessary portion of hay.

Solution:

To find the maximum number of cows, we need to solve the equation:

(9/6) * x = 250

Multiplying both sides of the equation by 6/9 to isolate x, we get:

x = (250 * 6) / 9

Simplifying the equation, we find:

x = 166.67

Since we cannot have a fraction of a cow, we need to round down to the nearest whole number. Therefore, the maximum number of cows that can receive the necessary portion of hay is 166 cows.

Calculation of the Percentage

To calculate the percentage of the third number in relation to the first number, we need to follow the given information:

- The third number is 40% of the second number. - The second number is 30% of the first number.

Let's calculate the percentage:

1. Calculate the second number: - The second number is 30% of the first number. - Let's assume the first number is y. - The second number is 30% of y, which can be written as 0.3y.

2. Calculate the third number: - The third number is 40% of the second number. - The second number is 0.3y. - The third number is 40% of 0.3y, which can be written as 0.4 * 0.3y.

3. Calculate the percentage of the third number in relation to the first number: - The percentage is calculated by dividing the third number by the first number and multiplying by 100. - The percentage is (0.4 * 0.3y) / y * 100.

Simplifying the equation, we find:

Percentage = (0.4 * 0.3) * 100

Percentage = 12%

Therefore, the third number represents 12% of the first number.

Note: The sources provided do not contain relevant information for this specific calculation.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос