
Вопрос задан 27.05.2018 в 01:54.
Предмет Алгебра.
Спрашивает Орекен Алдияр.
Сколько корней имеет заданное уравнение 2x3−9x2−24x−31=0 на промежутке (0;+∞)?


Ответы на вопрос

Отвечает Пичугова Рина.
2x^3-9x^2-24x-31=0
6x^2-18x-24=0 \\
6(x^2-3x-4)=0 \\
D=9+16=25 \\
x_{1,2} = \frac{3б5}{2} ; x_1 = 4; x_2 = -1 \\
f(-1) = -18 ; f(4) = -143;
Слева от экстремума (-1) функция убывает, там нулей нет.
Между экстремумов тоже нулей нет, т.к. она монотонно убывает между ними.
Справа от f(4) функция возрастает, значит всего один корень.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili