Вопрос задан 24.05.2018 в 15:25. Предмет Алгебра. Спрашивает Юдин Саша.

Две копировальные машины печатают рукопись. Если всю рукопись будет печатать первая машина, то

работа будет выполнена на 4 мин позже, чем две машины, работая вместе. Если печатать всю рукопись будет вторая машина, то она напечатает на 25 мин позже, чем обе машины, работая вместе. За сколько минут может напечатать эту рукопись вторая машина? надо с таблицей и без систем уровнений и желательно с фото
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Роженцева Мария.

1 машина напечатает рукопись за x мин, по 1/x части в мин.
2 машина напечатает рукопись за y мин, по 1/y части в мин.
Обе машины вместе напечатают рукопись за x-4 = y-25 мин,
по 1/x + 1/y = 1/(x-4) = 1/(y-25) части в мин.
Получаем y - x = 25 - 4 = 21 мин. На столько быстрее напечатает 1 машина.
Получаем уравнение
1/x + 1/(x+21) = 1/(x-4)
Переходим от дробей к целым числам.
(x-4)(x+21) + x(x-4) = x(x+21)
x^2 + 17x - 84 + x^2 - 4x = x^2 + 21x
x^2 - 8x - 84 = 0
D = 8^2 - 4(-84) = 64 + 336 = 400 = 20^2
x1 = (8 - 20)/2 = -6 < 0 - не подходит
x2 = (8 + 20)/2 = 14; y = x + 21 = 14 + 21 = 35
Ответ: 1 машина - за 14 мин, 2 машина за 35 мин.

0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос