Вопрос задан 20.06.2019 в 07:08.
Предмет Алгебра.
Спрашивает Лысюк Максим.
Докажите, что из всех прямоугольных треугольников с суммой катетов, равной 6 см, наибольшую площадь
имеет равнобедренный треугольник.Ответы на вопрос
Отвечает Попов Даниил.
Если один катет равен х, то второй равен (6-х). Тогда составим функцию у=S(х), выражающую зависимость площадь от значения x:

Исследуем функцию на экстремум:

Так как при переходе через точку х=3 производная меняет свой знак с"+" на "-", то х=3 - точка максимума. Значит при х=3 треугольник имеет наибольшую площадь. Но так как 6-х=6-3=3, то есть две стороны треугольника равны, то получаем, что наибольшая площадь у равнобедренного треугольника, которая равна
Исследуем функцию на экстремум:
Так как при переходе через точку х=3 производная меняет свой знак с"+" на "-", то х=3 - точка максимума. Значит при х=3 треугольник имеет наибольшую площадь. Но так как 6-х=6-3=3, то есть две стороны треугольника равны, то получаем, что наибольшая площадь у равнобедренного треугольника, которая равна
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
