Вопрос задан 20.06.2019 в 07:08. Предмет Алгебра. Спрашивает Лысюк Максим.

Докажите, что из всех прямоугольных треугольников с суммой катетов, равной 6 см, наибольшую площадь

имеет равнобедренный треугольник.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Попов Даниил.
Если один катет равен х, то второй равен (6-х). Тогда составим функцию у=S(х), выражающую зависимость площадь от значения x:
y= \frac{1}{2} \cdot x\cdot(6-x)=\frac{1}{2} (6x-x^2)
Исследуем функцию на экстремум:
y'=\frac{1}{2} (6-2x)
\\\
y'=0: 
\\\
\frac{1}{2} (6-2x)=0
\\\
6-2x=0
\\\
x=3
Так как при переходе через точку х=3 производная меняет свой знак с"+" на "-", то х=3 - точка максимума. Значит при х=3 треугольник имеет наибольшую площадь. Но так как 6-х=6-3=3, то есть две стороны треугольника равны, то получаем, что наибольшая площадь у равнобедренного треугольника, которая равна S= \frac{1}{2} \cdot 3\cdot 3=4.5
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос