
Вопрос задан 19.06.2019 в 05:50.
Предмет Алгебра.
Спрашивает Акбулатова Назгуль.
1. Найти промежутки возрастания и убывания функции y=2x^3+9x^2-24x-7 . 2. Найти стационарные точки
функции y=cos 4x-2x*корень 3

Ответы на вопрос

Отвечает Мышковец Александра.
Решение
1) y = 2*(x³ )+ 9*(x²) - 24*x - 7
1. Находим интервалы возрастания и убывания.
Первая производная.
f'(x) = 6x² + 18x - 24
Находим нули функции. Для этого приравниваем производную к нулю
6x² + 18x - 24 = 0
Откуда:
x₁ = - 4
x₂ = 1
(-∞ ;-4) f'(x) > 0 функция возрастает
(-4; 1) f'(x) < 0 функция убывает
(1; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = - 4 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 4 - точка максимума. В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.
2) Найти стационарные точки функции y = cos 4x-2x*√3
Стационарные точки функции - это точки (значения аргумента), в которых производная функции первого порядка обращается в нуль.
y` = ( cos 4x-2x*√3)` = - 4sin4x - 2√3
- 4sin4x - 2√3 = 0
4sin4x = - 2√3
sin4x = - √3/2
4x = (-1)^narcsin(-√3/2) + πk, k ∈Z
4x = (-1)^(n+1)arcsin(√3/2) + πk, k ∈Z
4x = (-1)^(n+1)*(π/3) + πk, k ∈Z
x = (-1)^(n+1)*(π/12) + πk/4, k ∈Z
1) y = 2*(x³ )+ 9*(x²) - 24*x - 7
1. Находим интервалы возрастания и убывания.
Первая производная.
f'(x) = 6x² + 18x - 24
Находим нули функции. Для этого приравниваем производную к нулю
6x² + 18x - 24 = 0
Откуда:
x₁ = - 4
x₂ = 1
(-∞ ;-4) f'(x) > 0 функция возрастает
(-4; 1) f'(x) < 0 функция убывает
(1; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = - 4 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 4 - точка максимума. В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.
2) Найти стационарные точки функции y = cos 4x-2x*√3
Стационарные точки функции - это точки (значения аргумента), в которых производная функции первого порядка обращается в нуль.
y` = ( cos 4x-2x*√3)` = - 4sin4x - 2√3
- 4sin4x - 2√3 = 0
4sin4x = - 2√3
sin4x = - √3/2
4x = (-1)^narcsin(-√3/2) + πk, k ∈Z
4x = (-1)^(n+1)arcsin(√3/2) + πk, k ∈Z
4x = (-1)^(n+1)*(π/3) + πk, k ∈Z
x = (-1)^(n+1)*(π/12) + πk/4, k ∈Z


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili