
Вопрос задан 19.05.2018 в 21:02.
Предмет Алгебра.
Спрашивает Тян Соня.
Найдите наименьшее и наибольшее значение функции y=x^2+8 * модуль(x)+7 на промежутке [-8,-2]


Ответы на вопрос

Отвечает Худаева Нонна.
Для х>0 следует рассмотреть функцию y1 = x² + 8x + 7,
Для х<0 следует рассмотреть функцию y2 = x² - 8x + 7,
У нас интервал [-8,-2], следовательно рассматриваем функцию у2.
y2 = x² - 8x + 7 - парабола веточками вверх. вершина параболы (минимальное значение функции) имеет место при х = 8:2 = 4, уmin = 16 - 32 + 7 = -9
Найдём нули этой функции:
x² - 8x + 7 = 0
D = 64 - 28 = 36
√D = 6
х1 = (8 + 6):2 = 7
х2 = (8 - 6):2 = 1
График функции y1 находится левее оси у, т.е. при х<0 только своейнисходящей частью, т.е. у∈(-∞, 0). На интервале [-8,-2] наименьшее значение функции будет при х = -2, т.е. у наим = у(-2) = 4 + 16 + 7 = 27, а наибольшее значение при х = -2, т.е у наиб = у(-8) = 64 + 64 + 7 = 135
Ответ: у наим = 27, у наиб = 135


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili