
1)1-(x-3)²=0 -Чему равен X 2)(x+2)^3=(4-x)^3 -Чему равен X 3)(x+1)^3+8=0 -Чему равен X 4)x²+6x+8=0
-Чему равен X Помогите пожалуйста очень надо!!!

Ответы на вопрос

3x+6=12-3x
3x+3x=12-6
6x=6
x=1



Решение уравнений:
1) 1 - (x - 3)² = 0
To solve this equation, we can expand the square and then isolate the variable x.
Expanding the square: 1 - (x - 3)² = 0 1 - (x² - 6x + 9) = 0 1 - x² + 6x - 9 = 0 - x² + 6x - 8 = 0
Now, we can solve this quadratic equation by factoring or using the quadratic formula. Let's use the quadratic formula:
The quadratic formula states that for an equation of the form ax² + bx + c = 0, the solutions for x are given by:
x = (-b ± √(b² - 4ac)) / (2a)
In our case, a = -1, b = 6, and c = -8. Plugging these values into the quadratic formula, we get:
x = (-6 ± √(6² - 4(-1)(-8))) / (2(-1))
Simplifying further:
x = (-6 ± √(36 - 32)) / (-2) x = (-6 ± √4) / (-2) x = (-6 ± 2) / (-2)
This gives us two possible solutions:
x₁ = (-6 + 2) / (-2) = -4 / (-2) = 2 x₂ = (-6 - 2) / (-2) = -8 / (-2) = 4
Therefore, the solutions to the equation 1 - (x - 3)² = 0 are x = 2 and x = 4..
2) (x + 2)³ = (4 - x)³
To solve this equation, we can take the cube root of both sides and then isolate the variable x.
Taking the cube root of both sides: ∛((x + 2)³) = ∛((4 - x)³) x + 2 = 4 - x
Now, we can solve this equation for x:
x + 2 = 4 - x 2x = 2 x = 1
Therefore, the solution to the equation (x + 2)³ = (4 - x)³ is x = 1..
3) (x + 1)³ + 8 = 0
To solve this equation, we can isolate the variable x.
(x + 1)³ + 8 = 0 (x + 1)³ = -8
Now, we can take the cube root of both sides:
∛((x + 1)³) = ∛(-8) x + 1 = -2
Solving for x:
x + 1 = -2 x = -3
Therefore, the solution to the equation (x + 1)³ + 8 = 0 is x = -3..
4) x² + 6x + 8 = 0
To solve this equation, we can use the quadratic formula.
The quadratic formula states that for an equation of the form ax² + bx + c = 0, the solutions for x are given by:
x = (-b ± √(b² - 4ac)) / (2a)
In our case, a = 1, b = 6, and c = 8. Plugging these values into the quadratic formula, we get:
x = (-6 ± √(6² - 4(1)(8))) / (2(1))
Simplifying further:
x = (-6 ± √(36 - 32)) / 2 x = (-6 ± √4) / 2 x = (-6 ± 2) / 2
This gives us two possible solutions:
x₁ = (-6 + 2) / 2 = -4 / 2 = -2 x₂ = (-6 - 2) / 2 = -8 / 2 = -4
Therefore, the solutions to the equation x² + 6x + 8 = 0 are x = -2 and x = -4..
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili