
Решите по теореме Виета


Ответы на вопрос




Solving Equations using Vieta's Theorem
Vieta's theorem is a mathematical theorem that relates the coefficients of a polynomial equation to its roots. It provides a way to find the sum and product of the roots of a quadratic equation. The theorem states that for a quadratic equation of the form ax^2 + bx + c = 0, the sum of the roots is equal to -b/a and the product of the roots is equal to c/a.
Let's solve some equations using Vieta's theorem:
1. Example 1: x^2 + 3x + 2 = 0
In this equation, a = 1, b = 3, and c = 2. According to Vieta's theorem, the sum of the roots is -b/a and the product of the roots is c/a.
- Sum of the roots: -b/a = -3/1 = -3 - Product of the roots: c/a = 2/1 = 2
Therefore, the sum of the roots is -3 and the product of the roots is 2.
2. Example 2: 8x^2 + 3x - 18 = 0
In this equation, a = 8, b = 3, and c = -18. Applying Vieta's theorem:
- Sum of the roots: -b/a = -3/8 - Product of the roots: c/a = -18/8
Therefore, the sum of the roots is -3/8 and the product of the roots is -18/8.
3. Example 3: x^2 - 9x + 20 = 0
In this equation, a = 1, b = -9, and c = 20. Using Vieta's theorem:
- Sum of the roots: -b/a = 9/1 = 9 - Product of the roots: c/a = 20/1 = 20
Thus, the sum of the roots is 9 and the product of the roots is 20.
4. Example 4: x^2 - 5x + 6 = 0
In this equation, a = 1, b = -5, and c = 6. Applying Vieta's theorem:
- Sum of the roots: -b/a = 5/1 = 5 - Product of the roots: c/a = 6/1 = 6
Therefore, the sum of the roots is 5 and the product of the roots is 6.
These examples demonstrate how Vieta's theorem can be used to find the sum and product of the roots of a quadratic equation.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili