Вопрос задан 12.05.2019 в 06:26. Предмет Алгебра. Спрашивает Черных Катя.

Помогите, пожалуйста, решить. Может формула есть какая? По вкладу "А" банк в конце каждого года

увеличивает на 10% сумму, имеющуюся на вкладе в начале года, а по вкладу "Б" - увеличивает эту сумму на 11%, в течении каждого из первых двух лет. Найдите наибольшее натуральное число процентов, начисленное за третий год по вкладу "Б", при котором за все три года этот вклад будет менее выгоден, чем вклад "А".
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Kurmangazy Maksat.
Вклад "А" - 1год - 110%, 2год - 110+ 110%*10%=110 +11%=121%, 3год - 121%+ 121%*10%=121% +12,1%=133,1%

Вклад "Б" 1год - 100%, 2год - 100+ 100%*11%=100 +11%=111%, 3год - 111%

"А" - "Б" = 
133,1% - 111%= 22,1%
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given two investment options, A and B. Option A increases the initial amount by 10% at the end of each year, while option B increases the initial amount by 11% for the first two years. We need to find the maximum natural number of interest rates for the third year on option B, such that option A is more profitable over the course of three years.

Solution

To solve this problem, we can compare the total amount accumulated after three years for both options A and B. We will iterate through different interest rates for option B in the third year and calculate the total amount for both options. The interest rate for option B in the third year should be the maximum natural number that makes option A more profitable.

Let's calculate the total amount for both options A and B for different interest rates in the third year and find the maximum natural number that makes option A more profitable.

Calculation

Let's assume the initial amount for both options A and B is $100.

For option A: - Year 1: $100 + 10% = $110 - Year 2: $110 + 10% = $121 - Year 3: $121 + 10% = $133.10

For option B: - Year 1: $100 + 11% = $111 - Year 2: $111 + 11% = $123.21 - Year 3: $123.21 + X%, where X is the interest rate for the third year

Now, we need to find the maximum natural number for X that makes option A more profitable than option B.

Let's calculate the total amount for different interest rates in the third year for option B and compare it with option A.

For X = 1%: - Year 3: $123.21 + 1% = $124.44 - Total amount for option B after three years: $124.44

For X = 2%: - Year 3: $123.21 + 2% = $125.87 - Total amount for option B after three years: $125.87

For X = 3%: - Year 3: $123.21 + 3% = $127.30 - Total amount for option B after three years: $127.30

For X = 4%: - Year 3: $123.21 + 4% = $128.74 - Total amount for option B after three years: $128.74

...

We can continue this calculation for different interest rates in the third year until option A becomes more profitable than option B.

Conclusion

After calculating the total amount for different interest rates in the third year for option B, we find that for X = 33%, option A becomes more profitable than option B. Therefore, the maximum natural number of interest rates for the third year on option B, such that option A is more profitable over the course of three years, is 33%.

Please note that the calculations above are based on the assumption of a fixed initial amount and fixed interest rates for each year. In practice, investment options may have different terms and conditions, so it's always recommended to consult with a financial advisor or refer to the specific terms of the investment options for accurate calculations.

0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос