Вопрос задан 11.05.2019 в 13:13. Предмет Алгебра. Спрашивает Растегаев Александр.

Число а становить 80% числа b , а число c становить 140% числа b. Знайти числа a,b,c якщо c більше

від а на 72.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Урбанович Егор.
Пусть х -число b
Тогда а=0,8х, а с=1,4х
Т.к. с больше а на 72 составим уравнение
1,4х-0,8х=72
0,6х=72
х=120 число b
тогда число а= 120*0,8=96
число с = 120*1,4=168
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте розкладемо умову на кілька кроків для знаходження чисел a, b і c.

1. Число a становить 80% числа b. Ми можемо записати це умову у вигляді рівняння: a = 0.8b

2. Число c становить 140% числа b. Також можемо записати це умову у вигляді рівняння: c = 1.4b

3. За умовою, число c більше від числа a на 72: c = a + 72

Тепер ми можемо розв'язати цю систему рівнянь, щоб знайти числа a, b і c.

Замінимо вираз для a з першого рівняння в третє рівняння: 0.8b + 72 = 1.4b

Віднімемо 0.8b з обох боків рівняння: 72 = 0.6b

Поділимо обидві частини на 0.6: b = 120

Тепер, коли у нас є значення b, ми можемо знайти значення a і c, підставивши його в перші два рівняння:

a = 0.8 * 120 = 96 c = 1.4 * 120 = 168

Отже, числа a, b і c будуть відповідно 96, 120 і 168.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос