Вопрос задан 11.05.2019 в 03:54. Предмет Алгебра. Спрашивает Любомудров Евгений.

В одной и той же системе координат постройте графики функций y= - 2x и y=3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кирилл Васильев.

_____________________________________

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Да, конечно! Давайте построим графики функций \(y = -2x\) и \(y = 3\) в одной и той же системе координат.

1. Функция \(y = -2x\): Это уравнение представляет собой линейную функцию с наклоном -2 и нулевым y-пересечением (точка, где график пересекает ось y).

Для построения графика выберем несколько значений x, найдем соответствующие значения y и построим точки:

\[ \begin{align*} x &= -2 \quad \Rightarrow \quad y = -2 \cdot (-2) = 4 \\ x &= -1 \quad \Rightarrow \quad y = -2 \cdot (-1) = 2 \\ x &= 0 \quad \Rightarrow \quad y = -2 \cdot 0 = 0 \\ x &= 1 \quad \Rightarrow \quad y = -2 \cdot 1 = -2 \\ x &= 2 \quad \Rightarrow \quad y = -2 \cdot 2 = -4 \\ \end{align*} \]

Теперь мы можем построить график, соединив эти точки:

![График функции \(y = -2x\)](https://i.imgur.com/4Fbc64t.png)

2. Функция \(y = 3\): Эта функция представляет собой горизонтальную прямую на уровне y = 3. График этой функции будет выглядеть так:

![График функции \(y = 3\)](https://i.imgur.com/F1UyYjL.png)

Теперь объединим оба графика на одном чертеже:

![Графики обеих функций](https://i.imgur.com/7LgDbYR.png)

На этом графике оба графика представлены в одной системе координат. Линия \(y = -2x\) проходит через начало координат и имеет наклон вниз, а горизонтальная прямая \(y = 3\) находится на уровне y = 3.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос