
5x^2-8x-4 больше 0, найти область определения


Ответы на вопрос




Уравнение 5x^2 - 8x - 4 > 0 представляет собой квадратное неравенство. Чтобы найти область определения этого неравенства, нужно найти значения x, при которых неравенство выполняется.
Решение:
1. Найдем корни квадратного уравнения 5x^2 - 8x - 4 = 0. Для этого воспользуемся формулой дискриминанта: D = b^2 - 4ac. В данном случае a = 5, b = -8 и c = -4. - D = (-8)^2 - 4 * 5 * (-4) = 64 + 80 = 144. - Так как D > 0, уравнение имеет два различных корня. - Найдем корни уравнения, используя формулу x = (-b ± √D) / (2a): - x1 = (-(-8) + √144) / (2 * 5) = (8 + 12) / 10 = 20 / 10 = 2. - x2 = (-(-8) - √144) / (2 * 5) = (8 - 12) / 10 = -4 / 10 = -0.4. - Таким образом, корни уравнения 5x^2 - 8x - 4 = 0 равны x1 = 2 и x2 = -0.4.2. Теперь определим, в каких интервалах неравенство 5x^2 - 8x - 4 > 0 выполняется. - Рассмотрим интервалы между корнями уравнения: (-∞, -0.4), (-0.4, 2) и (2, +∞). - Чтобы определить, в каких интервалах неравенство выполняется, можно выбрать тестовую точку в каждом интервале и подставить ее в неравенство. - Например, возьмем точку x = -1 (из интервала (-∞, -0.4)): - Подставляем x = -1 в неравенство: 5(-1)^2 - 8(-1) - 4 > 0. - Получаем: 5 + 8 - 4 > 0. - Упрощаем: 9 - 4 > 0. - Получаем: 5 > 0. - Так как неравенство выполняется, интервал (-∞, -0.4) входит в область определения неравенства. - Аналогично, можно проверить интервалы (-0.4, 2) и (2, +∞). - Таким образом, область определения неравенства 5x^2 - 8x - 4 > 0 состоит из интервалов (-∞, -0.4) и (2, +∞).
Ответ:
Область определения неравенства 5x^2 - 8x - 4 > 0 состоит из интервалов (-∞, -0.4) и (2, +∞).

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili