
Периметр прямоугольника 22 см площадь 24 см как узнать длины


Ответы на вопрос

2х+2у=22
х*у=24
х+у=11
х=11-у
(11-у)*у=24
11у-у²=24
у²-11у+24=0
у1=8 у2=3
х1=3 х2=8
Длина 8 см, ширина 3см, или наооброт длина 3 см, ширина 8 см.



Finding the Lengths of a Rectangle Given the Perimeter and Area
To find the lengths of a rectangle given the perimeter and area, we can use the formulas for the perimeter and area of a rectangle.
The perimeter of a rectangle is given by the formula: P = 2 * (a + b), where P is the perimeter and a and b are the lengths of the sides of the rectangle.
The area of a rectangle is given by the formula: A = a * b, where A is the area and a and b are the lengths of the sides of the rectangle.
In this case, we are given that the perimeter of the rectangle is 22 cm and the area is 24 cm². We need to find the lengths of the sides.
Let's solve for the lengths of the sides using these formulas.
Solution:
Let's assume that a and b are the lengths of the sides of the rectangle.
From the given information, we have:
Perimeter (P) = 22 cm Area (A) = 24 cm²
Using the formulas for the perimeter and area of a rectangle, we can set up the following equations:
Equation 1: P = 2 * (a + b) Equation 2: A = a * b
Substituting the given values into the equations, we have:
Equation 1: 22 = 2 * (a + b) Equation 2: 24 = a * b
To solve this system of equations, we can use substitution or elimination. Let's use substitution.
From Equation 1, we can solve for a in terms of b:
a = (22 - 2b) / 2
Substituting this value of a into Equation 2, we have:
24 = [(22 - 2b) / 2] * b
Simplifying the equation, we get:
48 = 22b - 2b²
Rearranging the equation, we have:
2b² - 22b + 48 = 0
Now, we can solve this quadratic equation to find the values of b.
Using the quadratic formula, b = (-b ± √(b² - 4ac)) / (2a), where a = 2, b = -22, and c = 48, we can calculate the values of b.
After calculating the values of b, we can substitute them back into Equation 1 to find the corresponding values of a.
Let's calculate the values of a and b.
Using the quadratic formula, we find that b = 6 and b = 8.
Substituting these values back into Equation 1, we find that a = 5 and a = 3.
Therefore, the lengths of the sides of the rectangle are 5 cm and 3 cm.
Answer:
The lengths of the sides of the rectangle are 5 cm and 3 cm.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili