Вопрос задан 06.05.2019 в 02:45. Предмет Алгебра. Спрашивает Gromova Nadya.

Решите уравнение (tg^2x-3)sqrt 11cosx=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Масленникова Иристина.
Tg²x-3=0
tgx=-√3⇒x=-π/3+πn,n∈Z
tgx=√3⇒x=π/3+kπ<k∈Z
cosx=0⇒x=π/2+πm,m∈Z
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим уравнение подробно.

Уравнение, которое мы должны решить, выглядит следующим образом:

(tg^2x - 3)sqrt(11cosx) = 0

Первым шагом в решении этого уравнения будет найти значения переменной x, при которых выражение в скобках равно нулю. То есть нам нужно решить уравнение:

tg^2x - 3 = 0 или sqrt(11cosx) = 0

Начнем с решения первого уравнения:

tg^2x - 3 = 0

Для начала, заметим, что в этом уравнении присутствует квадрат тангенса, и мы можем использовать тригонометрическую идентичность, чтобы заменить tg^2x на выражение, использующее косинус:

tg^2x = sec^2x - 1

Теперь мы можем переписать уравнение следующим образом:

(sec^2x - 1) - 3 = 0

sec^2x - 4 = 0

Теперь давайте решим это уравнение:

sec^2x = 4

secx = ±2

Для найти значения переменной x, мы можем использовать обратные тригонометрические функции. secx - это обратная функция косинуса:

x = arccos(±2)

Однако, обратная функция косинуса определена только в определенных диапазонах значений, и значения ±2 не принадлежат этим диапазонам. Поэтому, уравнение tg^2x - 3 = 0 не имеет решений.

Теперь рассмотрим второе уравнение:

sqrt(11cosx) = 0

Это уравнение может быть выполнено только в том случае, если аргумент квадратного корня равен нулю:

11cosx = 0

cosx = 0

Теперь мы можем использовать обратную функцию косинуса для нахождения значений переменной x:

x = arccos(0)

Вспомним, что косинус равен нулю в точках, где угол x является кратным значениям π/2. Это значит, что x может быть равно:

x = π/2 + kπ

где k - целое число.

Таким образом, решением уравнения sqrt(11cosx) = 0 являются значения x, которые являются сдвигами от π/2 на целое число кратное π.

В итоге, уравнение (tg^2x - 3)sqrt(11cosx) = 0 не имеет решений для переменной x.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос