
Вопрос задан 02.05.2019 в 08:44.
Предмет Алгебра.
Спрашивает Данилина Таня.
Найдите корень уравнения (sin(pi(2x-3)))/6=0.5 В ответ напишите наименьший положительный корень.


Ответы на вопрос

Отвечает Єгорова-Егорова Даша.
При любом аргументе функция синуса принимает значения [-1; 1].
Поэтому это уравнение решений не имеет.
Вот если бы было чуть по-другому:
Тогда
1)
Делим все на pi и умножаем на 6
2x - 3 = 1 + 12k
2x = 4 + 12k
x = 2 + 6k. Наименьший положительный корень x = 2 при k = 0
2)
Делим все на pi и умножаем на 6
2x + 3 = 5 + 12k
2x = 2 + 12k
x = 1 + 6k. Наименьший положительный корень x = 1 при k = 0
Ответ: 1



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения этого уравнения, нужно сначала избавиться от дроби, умножив обе части на 6. Получим:
sin(pi(2x-3)) = 3
Затем нужно найти такое значение x, при котором синус равен 3. Однако, синус не может быть больше 1 или меньше -1, поэтому такого значения x не существует. Уравнение не имеет решений.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili