
Сколько существует 3-х значных чисел , кратных5, две первые цифры которых: 1) нечетные; 2) нечетные
различные; 3) четные; 4) четные различные.

Ответы на вопрос

1)
Ответ: 50 чисел
2)
Ответ: 40 чисел
3)
Ответ: 49 чисел
4)
Ответ: 40 чисел



Для того чтобы найти количество трехзначных чисел, кратных 5, и удовлетворяющих определенным условиям, мы можем использовать комбинаторику и алгебру.
1) Нечетные первые цифры:
Если первая цифра числа нечетная, то она может быть любой из следующих цифр: 1, 3, 5, 7 или 9. Вторая и третья цифры могут быть любыми из десяти возможных цифр (0-9). Затем мы должны убедиться, что полученное число является кратным 5.Таким образом, для каждой нечетной первой цифры у нас есть 10 возможностей для второй цифры и еще 10 возможностей для третьей цифры. Общее количество таких чисел будет равно произведению этих чисел: 10 * 10 = 100.
2) Нечетные различные первые цифры:
Если первая цифра четная, она не может быть равной 0, поэтому у нас есть 5 возможных вариантов для нечетной первой цифры: 1, 3, 5, 7 или 9. Вторая цифра может быть любой из девяти возможных цифр (0-9), и третья цифра может быть любой из оставшихся восьми цифр.Таким образом, для каждой нечетной различной первой цифры у нас есть 5 возможностей для второй цифры и 8 возможностей для третьей цифры. Общее количество таких чисел будет равно произведению этих чисел: 5 * 9 * 8 = 360.
3) Четные первые цифры:
Если первая цифра числа четная, то она может быть любой из следующих цифр: 2, 4, 6 или 8. Вторая и третья цифры могут быть любыми из десяти возможных цифр (0-9). Затем мы должны убедиться, что полученное число является кратным 5.Таким образом, для каждой четной первой цифры у нас есть 4 возможности для второй цифры и еще 10 возможностей для третьей цифры. Общее количество таких чисел будет равно произведению этих чисел: 4 * 10 = 40.
4) Четные различные первые цифры:
Если первая цифра четная, она не может быть равной 0, поэтому у нас есть 4 возможных варианта для четной первой цифры: 2, 4, 6 или 8. Вторая цифра может быть любой из девяти возможных цифр (0-9), и третья цифра может быть любой из оставшихся восьми цифр.Таким образом, для каждой четной различной первой цифры у нас есть 4 возможности для второй цифры и 8 возможностей для третьей цифры. Общее количество таких чисел будет равно произведению этих чисел: 4 * 9 * 8 = 288.
Таким образом, мы получили следующие результаты: 1) Количество трехзначных чисел, кратных 5, с нечетными первыми цифрами: 100. 2) Количество трехзначных чисел, кратных 5, с нечетными различными первыми цифрами: 360. 3) Количество трехзначных чисел, кратных 5, с четными первыми цифрами: 40. 4) Количество трехзначных чисел, кратных 5, с четными различными первыми цифрами: 288.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili