 
Привести уравнение кривой второго порядка x^2 + 4y^2 + 4x - 8y - 8 = 0 к каноническому виду.
Определить тип кривой, её параметры и сделть рисунок 0
        0
         0
        0
    Ответы на вопрос
 
        (x+2)² -4 +4*(y-1)² - 4 -8 =0
(x+2)² + 4*(y-1)² = 16
Разделим обе части уравнения на 16:
(x+2)² / 4² + (y-1)² / 2² = 1
Получили уравнение ЭЛЛИПСА
Центр эллипса (-2; 1)
Полуоси:
a=4; b=2
Чертим рисунок:(См скрин)
 0
                    0
                     0
                    0
                 
            Converting the Equation to Canonical Form
To convert the equation of the second-order curve x^2 + 4y^2 + 4x - 8y - 8 = 0 to canonical form, we need to complete the square for both the x and y terms.
Let's start by rearranging the equation:
x^2 + 4x + 4y^2 - 8y - 8 = 0
Now, let's complete the square for the x terms. To do this, we add and subtract the square of half the coefficient of x:
x^2 + 4x + 4 + 4y^2 - 8y - 8 = 4
Simplifying further:
(x^2 + 4x + 4) + 4y^2 - 8y - 8 = 4
Now, let's complete the square for the y terms. To do this, we add and subtract the square of half the coefficient of y:
(x^2 + 4x + 4) + 4(y^2 - 2y + 1) - 8 - 4 = 4
Simplifying further:
(x^2 + 4x + 4) + 4(y^2 - 2y + 1) - 12 = 4
Now, let's simplify the equation:
(x + 2)^2 + 4(y - 1)^2 - 12 = 4
(x + 2)^2 + 4(y - 1)^2 = 16
Dividing both sides of the equation by 16, we get:
((x + 2)^2)/16 + ((y - 1)^2)/4 = 1
Type and Parameters of the Curve
The equation ((x + 2)^2)/16 + ((y - 1)^2)/4 = 1 represents an ellipse in the canonical form.
The center of the ellipse is at the point (-2, 1). The major axis is parallel to the x-axis and has a length of 8 units, while the minor axis is parallel to the y-axis and has a length of 4 units.
The semi-major axis is equal to the square root of the denominator of the x-term, which is 4. Therefore, the semi-major axis is 2 units.
The semi-minor axis is equal to the square root of the denominator of the y-term, which is 2. Therefore, the semi-minor axis is √2 units.
Graph of the Ellipse
To visualize the ellipse, we can plot the center (-2, 1) and draw the ellipse using the semi-major and semi-minor axes.
Here is a rough sketch of the ellipse:
``` | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			