
Привести уравнение кривой второго порядка x^2 + 4y^2 + 4x - 8y - 8 = 0 к каноническому виду.
Определить тип кривой, её параметры и сделть рисунок

Ответы на вопрос

(x+2)² -4 +4*(y-1)² - 4 -8 =0
(x+2)² + 4*(y-1)² = 16
Разделим обе части уравнения на 16:
(x+2)² / 4² + (y-1)² / 2² = 1
Получили уравнение ЭЛЛИПСА
Центр эллипса (-2; 1)
Полуоси:
a=4; b=2
Чертим рисунок:(См скрин)



Converting the Equation to Canonical Form
To convert the equation of the second-order curve x^2 + 4y^2 + 4x - 8y - 8 = 0 to canonical form, we need to complete the square for both the x and y terms.
Let's start by rearranging the equation:
x^2 + 4x + 4y^2 - 8y - 8 = 0
Now, let's complete the square for the x terms. To do this, we add and subtract the square of half the coefficient of x:
x^2 + 4x + 4 + 4y^2 - 8y - 8 = 4
Simplifying further:
(x^2 + 4x + 4) + 4y^2 - 8y - 8 = 4
Now, let's complete the square for the y terms. To do this, we add and subtract the square of half the coefficient of y:
(x^2 + 4x + 4) + 4(y^2 - 2y + 1) - 8 - 4 = 4
Simplifying further:
(x^2 + 4x + 4) + 4(y^2 - 2y + 1) - 12 = 4
Now, let's simplify the equation:
(x + 2)^2 + 4(y - 1)^2 - 12 = 4
(x + 2)^2 + 4(y - 1)^2 = 16
Dividing both sides of the equation by 16, we get:
((x + 2)^2)/16 + ((y - 1)^2)/4 = 1
Type and Parameters of the Curve
The equation ((x + 2)^2)/16 + ((y - 1)^2)/4 = 1 represents an ellipse in the canonical form.
The center of the ellipse is at the point (-2, 1). The major axis is parallel to the x-axis and has a length of 8 units, while the minor axis is parallel to the y-axis and has a length of 4 units.
The semi-major axis is equal to the square root of the denominator of the x-term, which is 4. Therefore, the semi-major axis is 2 units.
The semi-minor axis is equal to the square root of the denominator of the y-term, which is 2. Therefore, the semi-minor axis is √2 units.
Graph of the Ellipse
To visualize the ellipse, we can plot the center (-2, 1) and draw the ellipse using the semi-major and semi-minor axes.
Here is a rough sketch of the ellipse:
``` | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili