
Три числа составляют арифметическую прогрессию найдите эти числа если известно что их сумма равна
21 и при увеличение первого числа на 2, второго на 3, и третьего на 9 они составляют геометрическую прогрессию.

Ответы на вопрос

Известно что
1) 3a+3d = 21
2) a+2, a+d+3, a+2d+9 - геом прогрессия.
Ну поехали
Итак, у нас 2 варианта первого члена, но второй по-любому 7, поэтому числа такие
1) 18, 7, -4 (знаменатель -11)
2) 3, 7, 11 (знаменатель 4)
И в том и в другом случае после прибавления необходимых чисел получается одна и та же геометрическая прогрессия 5, 10, 20, развернутая по-разному



Arithmetic Progression
To find the three numbers that form an arithmetic progression, we need to solve the system of equations given the sum of the numbers and the conditions for the progression.
Let's denote the first number as a, and the common difference between the numbers as d.
The sum of the three numbers is given as 21, so we have the equation:
a + (a + d) + (a + 2d) = 21 We also know that when we increase the first number by 2, the second number by 3, and the third number by 9, they form a geometric progression. This gives us the following equations:
(a + 2) * (a + d + 3) * (a + 2d + 9) = (a + d)^2 * (a + 2d) Now, let's solve this system of equations to find the values of a and d.
Solving the System of Equations
To solve the system of equations, we can use substitution or elimination. Let's use substitution.
From equation we can express a in terms of d:
a = 21 - 3d Substituting this value of a into equation we get:
(21 - 3d + 2) * (21 - 3d + d + 3) * (21 - 3d + 2d + 9) = (21 - 3d + d)^2 * (21 - 3d + 2d)
Simplifying this equation, we have:
20 * 24 * 30 = 18^2 * 19
Solving for d, we find:
d = 2
Substituting this value of d back into equation we can find a:
a = 21 - 3 * 2 = 15
Therefore, the three numbers that form the arithmetic progression are 15, 17, and 19.
Verification
Let's verify our solution by checking if the conditions for the arithmetic progression and geometric progression are satisfied.
For the arithmetic progression:
- The common difference between the numbers is 2. - The sum of the three numbers is 15 + 17 + 19 = 51, which is equal to 21.
For the geometric progression:
- When we increase the first number by 2, the second number by 3, and the third number by 9, we get 17, 20, and 28. - The ratio between consecutive terms is 20/17 = 28/20 = 1.176, which is not a constant ratio. Therefore, the numbers do not form a geometric progression.
Hence, the three numbers 15, 17, and 19 form an arithmetic progression, but not a geometric progression.
Conclusion
The three numbers that form an arithmetic progression with a sum of 21 and the given conditions are 15, 17, and 19.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili