10x2-11x+3=0 4x2+12x+5=0 5x2-11x+6=0 6x2+5x-6=0 Дискриминант
Ответы на вопрос
        
            Solution for the Equation 10x^2 - 11x + 3 = 0
To find the solutions for the equation 10x^2 - 11x + 3 = 0, we can use the quadratic formula. The quadratic formula states that for an equation of the form ax^2 + bx + c = 0, the solutions are given by:
x = (-b ± √(b^2 - 4ac)) / (2a)
For the equation 10x^2 - 11x + 3 = 0, we have a = 10, b = -11, and c = 3. Plugging these values into the quadratic formula, we get:
x = (-(-11) ± √((-11)^2 - 4 * 10 * 3)) / (2 * 10)
Simplifying further:
x = (11 ± √(121 - 120)) / 20
x = (11 ± √1) / 20
Since the discriminant (√(b^2 - 4ac)) is equal to 1, we have two distinct solutions:
x = (11 + 1) / 20 = 12 / 20 = 0.6
x = (11 - 1) / 20 = 10 / 20 = 0.5
Therefore, the solutions for the equation 10x^2 - 11x + 3 = 0 are x = 0.6 and x = 0.5..
Solution for the Equation 4x^2 + 12x + 5 = 0
To find the solutions for the equation 4x^2 + 12x + 5 = 0, we can again use the quadratic formula. For this equation, we have a = 4, b = 12, and c = 5. Plugging these values into the quadratic formula, we get:
x = (-12 ± √(12^2 - 4 * 4 * 5)) / (2 * 4)
Simplifying further:
x = (-12 ± √(144 - 80)) / 8
x = (-12 ± √64) / 8
Since the discriminant (√(b^2 - 4ac)) is equal to 8, we have two distinct solutions:
x = (-12 + 8) / 8 = -4 / 8 = -0.5
x = (-12 - 8) / 8 = -20 / 8 = -2.5
Therefore, the solutions for the equation 4x^2 + 12x + 5 = 0 are x = -0.5 and x = -2.5..
Solution for the Equation 5x^2 - 11x + 6 = 0
For the equation 5x^2 - 11x + 6 = 0, we can once again use the quadratic formula. Here, a = 5, b = -11, and c = 6. Plugging these values into the quadratic formula, we get:
x = (-(-11) ± √((-11)^2 - 4 * 5 * 6)) / (2 * 5)
Simplifying further:
x = (11 ± √(121 - 120)) / 10
x = (11 ± √1) / 10
Since the discriminant (√(b^2 - 4ac)) is equal to 1, we have two distinct solutions:
x = (11 + 1) / 10 = 12 / 10 = 1.2
x = (11 - 1) / 10 = 10 / 10 = 1
Therefore, the solutions for the equation 5x^2 - 11x + 6 = 0 are x = 1.2 and x = 1..
Solution for the Equation 6x^2 + 5x - 6 = 0
For the equation 6x^2 + 5x - 6 = 0, we can use the quadratic formula. Here, a = 6, b = 5, and c = -6. Plugging these values into the quadratic formula, we get:
x = (-5 ± √(5^2 - 4 * 6 * -6)) / (2 * 6)
Simplifying further:
x = (-5 ± √(25 + 144)) / 12
x = (-5 ± √169) / 12
Since the discriminant (√(b^2 - 4ac)) is equal to 13, we have two distinct solutions:
x = (-5 + 13) / 12 = 8 / 12 = 0.67
**x = (-5 - 13) / 12 = -18
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			