
(x+6)(x+2)<0 помогите пожалуйста


Ответы на вопрос




Solving the Inequality (x+6)(x+2) < 0
To solve the inequality (x+6)(x+2) < 0, we can use the method of intervals and the concept of sign analysis.
First, let's find the critical points by setting each factor equal to zero and solving for x: 1. (x+6) = 0 => x = -6 2. (x+2) = 0 => x = -2
Now, we can use these critical points to divide the number line into intervals and determine the sign of the expression (x+6)(x+2) in each interval.
- When x < -6, both (x+6) and (x+2) are negative, so their product is positive. - When -6 < x < -2, (x+6) is positive and (x+2) is negative, so their product is negative. - When x > -2, both (x+6) and (x+2) are positive, so their product is positive.
Now, we can determine the solution to the inequality based on the sign analysis.
Solution: The solution to the inequality (x+6)(x+2) < 0 is the interval where the expression is negative, which is -6 < x < -2.
Therefore, the solution to the inequality is -6 < x < -2.
This means that the inequality is satisfied when x is between -6 and -2, exclusive of the endpoints.
I hope this helps! If you have any further questions, feel free to ask.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili