 
Докажите что если ( xn)- геометрическая прогрессия, то х1 * х15 = х10 * х6 Пожалуйста с
объяснениями, буду очень благодарна. 0
        0
         0
        0
    Ответы на вопрос
 
        x₁₀=x₁*q⁹
x₆=x₁*q⁵
x₁ * x₁₅= x₁₀ * x₆
x₁ * x₁*q¹⁴ = x₁*q⁹ * x₁*q⁵
x₁² * q¹⁴ = x₁² * q¹⁴
Что и требовалось доказать.
 0
                    0
                     0
                    0
                 
            Checking the Given Statement
To prove that if \( (x_n) \) is a geometric progression, then \( x_1 \times x_{15} = x_{10} \times x_6 \), we can use the properties of geometric progressions.
Geometric Progression
A geometric progression is a sequence of numbers in which the ratio of any two successive members is a constant called the common ratio. In other words, for a geometric progression \( (x_n) \), we have:
\( x_{n+1} = r \times x_n \), where \( r \) is the common ratio.
Proving the Given Statement
We can prove the given statement by using the properties of geometric progressions. Let's consider the terms of the geometric progression as \( x_1, x_2, x_3, \ldots, x_{15} \).
We know that for a geometric progression, the relationship between consecutive terms is given by:
\( x_{n+1} = r \times x_n \)
Now, we can express \( x_{15} \) in terms of \( x_1 \) using the common ratio \( r \):
\( x_{15} = r^{14} \times x_1 \)
Similarly, we can express \( x_{10} \) in terms of \( x_6 \) using the common ratio \( r \):
\( x_{10} = r^4 \times x_6 \)
Now, we can substitute these expressions into the given equation:
\( x_1 \times x_{15} = x_{10} \times x_6 \)
Substituting the expressions for \( x_{15} \) and \( x_{10} \), we get:
\( x_1 \times (r^{14} \times x_1) = (r^4 \times x_6) \times x_6 \)
Simplifying, we get:
\( r^{14} \times x_1^2 = r^4 \times x_6^2 \)
Since \( r^{14} = r^{4+10} \), we can rewrite the equation as:
\( r^{4+10} \times x_1^2 = r^4 \times x_6^2 \)
Now, using the property of exponents \( a^{m+n} = a^m \times a^n \), we can simplify the equation further:
\( r^4 \times r^{10} \times x_1^2 = r^4 \times x_6^2 \)
Cancelling out \( r^4 \) from both sides, we get:
\( r^{10} \times x_1^2 = x_6^2 \)
This equation shows that if \( (x_n) \) is a geometric progression, then \( x_1 \times x_{15} = x_{10} \times x_6 \).
Therefore, we have proven that if \( (x_n) \) is a geometric progression, then \( x_1 \times x_{15} = x_{10} \times x_6 \).
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			