
Докажите что если ( xn)- геометрическая прогрессия, то х1 * х15 = х10 * х6 Пожалуйста с
объяснениями, буду очень благодарна.

Ответы на вопрос

x₁₀=x₁*q⁹
x₆=x₁*q⁵
x₁ * x₁₅= x₁₀ * x₆
x₁ * x₁*q¹⁴ = x₁*q⁹ * x₁*q⁵
x₁² * q¹⁴ = x₁² * q¹⁴
Что и требовалось доказать.



Checking the Given Statement
To prove that if \( (x_n) \) is a geometric progression, then \( x_1 \times x_{15} = x_{10} \times x_6 \), we can use the properties of geometric progressions.
Geometric Progression
A geometric progression is a sequence of numbers in which the ratio of any two successive members is a constant called the common ratio. In other words, for a geometric progression \( (x_n) \), we have:
\( x_{n+1} = r \times x_n \), where \( r \) is the common ratio.
Proving the Given Statement
We can prove the given statement by using the properties of geometric progressions. Let's consider the terms of the geometric progression as \( x_1, x_2, x_3, \ldots, x_{15} \).
We know that for a geometric progression, the relationship between consecutive terms is given by:
\( x_{n+1} = r \times x_n \)
Now, we can express \( x_{15} \) in terms of \( x_1 \) using the common ratio \( r \):
\( x_{15} = r^{14} \times x_1 \)
Similarly, we can express \( x_{10} \) in terms of \( x_6 \) using the common ratio \( r \):
\( x_{10} = r^4 \times x_6 \)
Now, we can substitute these expressions into the given equation:
\( x_1 \times x_{15} = x_{10} \times x_6 \)
Substituting the expressions for \( x_{15} \) and \( x_{10} \), we get:
\( x_1 \times (r^{14} \times x_1) = (r^4 \times x_6) \times x_6 \)
Simplifying, we get:
\( r^{14} \times x_1^2 = r^4 \times x_6^2 \)
Since \( r^{14} = r^{4+10} \), we can rewrite the equation as:
\( r^{4+10} \times x_1^2 = r^4 \times x_6^2 \)
Now, using the property of exponents \( a^{m+n} = a^m \times a^n \), we can simplify the equation further:
\( r^4 \times r^{10} \times x_1^2 = r^4 \times x_6^2 \)
Cancelling out \( r^4 \) from both sides, we get:
\( r^{10} \times x_1^2 = x_6^2 \)
This equation shows that if \( (x_n) \) is a geometric progression, then \( x_1 \times x_{15} = x_{10} \times x_6 \).
Therefore, we have proven that if \( (x_n) \) is a geometric progression, then \( x_1 \times x_{15} = x_{10} \times x_6 \).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili