
Из 20 филиалов банка 10 являются региональными. Для проверки случайным образом выбраны 5 филиалов.
Каков вероятность того, что среди них окажется: а) не менее 3-х региональных филиалов; б) хотя бы один региональный

Ответы на вопрос




Probability of having at least 3 regional branches out of 5 randomly selected branches
To calculate the probability of having at least 3 regional branches out of 5 randomly selected branches, we need to consider the total number of ways to select 5 branches out of 20 and the number of ways to select at least 3 regional branches out of 10.
The total number of ways to select 5 branches out of 20 can be calculated using the combination formula:
Total number of ways to select 5 branches out of 20 = C(20, 5) = 20! / (5! * (20-5)!) = 15,504
The number of ways to select at least 3 regional branches out of 10 can be calculated by considering the combinations of selecting 3, 4, or 5 regional branches out of 10:
Number of ways to select 3 regional branches out of 10 = C(10, 3) = 10! / (3! * (10-3)!) = 120
Number of ways to select 4 regional branches out of 10 = C(10, 4) = 10! / (4! * (10-4)!) = 210
Number of ways to select 5 regional branches out of 10 = C(10, 5) = 10! / (5! * (10-5)!) = 252
Therefore, the total number of ways to select at least 3 regional branches out of 10 is:
Total number of ways to select at least 3 regional branches out of 10 = 120 + 210 + 252 = 582
Now, we can calculate the probability by dividing the number of favorable outcomes (selecting at least 3 regional branches) by the total number of possible outcomes (selecting any 5 branches):
Probability of having at least 3 regional branches out of 5 randomly selected branches = 582 / 15,504 ≈ 0.0376
So, the probability of randomly selecting 5 branches and having at least 3 of them be regional branches is approximately 0.0376.
Probability of having at least one regional branch out of 5 randomly selected branches
To calculate the probability of having at least one regional branch out of 5 randomly selected branches, we can use the complement rule. The complement of having at least one regional branch is having no regional branches at all.
The number of ways to select 5 non-regional branches out of 10 can be calculated using the combination formula:
Number of ways to select 5 non-regional branches out of 10 = C(10, 5) = 10! / (5! * (10-5)!) = 252
Therefore, the number of ways to have at least one regional branch out of 5 randomly selected branches is:
Number of ways to have at least one regional branch out of 5 randomly selected branches = Total number of possible outcomes - Number of ways to select 5 non-regional branches out of 10 = 15,504 - 252 = 15,252
Now, we can calculate the probability by dividing the number of favorable outcomes (having at least one regional branch) by the total number of possible outcomes (selecting any 5 branches):
Probability of having at least one regional branch out of 5 randomly selected branches = 15,252 / 15,504 ≈ 0.9838
So, the probability of randomly selecting 5 branches and having at least one of them be a regional branch is approximately 0.9838.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili