Вопрос задан 27.04.2019 в 22:56. Предмет Алгебра. Спрашивает Шойдоров Содном.

Сократить дробь 8b+24 b²-9

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зюзин Никита.
8(b+3)/(b+3)(b-3)=8/(b-3)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы сократить данную дробь, нужно найти их наибольший общий делитель (НОД) числителя и знаменателя.

Для начала, давайте разложим числитель и знаменатель на множители: Числитель: 8b + 24 Знаменатель: b² - 9

Разложение числителя: 8b + 24 = 8(b + 3)

Разложение знаменателя: b² - 9 = (b + 3)(b - 3)

Теперь мы можем сократить общие множители числителя и знаменателя: (8(b + 3)) / ((b + 3)(b - 3))

Обратите внимание, что у нас есть общий множитель (b + 3) в числителе и знаменателе. Мы можем сократить его, оставив: 8 / (b - 3)

Таким образом, исходная дробь 8b + 24 / b² - 9 может быть сокращена до 8 / (b - 3).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос