
Известно, что sint= 5/13 t∈(п/2; п) Найдите sin2t, cos2t, tg2t, ctg2t Задача не с целью просто
решить её, а с целью объяснить мне.

Ответы на вопрос

Т.к. t∈(π/2;π) - 2 четверть, в ней косинус отрицательный. значит перед корнем будет минус.



Trigonometric Functions and Their Values
To solve this problem, we'll start by understanding the given information. The equation provided is sint = 5/13 and t ∈ (π/2, π). This means that the sine of angle t is 5/13, and the angle t lies in the second quadrant (from π/2 to π).
Finding sin(2t), cos(2t), tan(2t), and cot(2t)
To find sin(2t), cos(2t), tan(2t), and cot(2t), we can use the double-angle identities for trigonometric functions. These identities are:
1. sin(2t) = 2sin(t)cos(t) 2. cos(2t) = cos^2(t) - sin^2(t) 3. tan(2t) = (2tan(t))/(1 - tan^2(t)) 4. cot(2t) = (cot^2(t) - 1)/(2cot(t))
Calculating sin(2t)
First, we'll calculate sin(2t) using the double-angle identity for sine: sin(2t) = 2sin(t)cos(t)
Given that sint = 5/13, we can find cost using the Pythagorean identity: cost = ±sqrt(1 - sin^2(t))
Let's calculate cost: cost = ±sqrt(1 - (5/13)^2) cost = ±sqrt(1 - 25/169) cost = ±sqrt(144/169) cost = ±12/13
Since t is in the second quadrant, cost is negative. Therefore, cost = -12/13.
Now, we can calculate sin(2t): sin(2t) = 2 * (5/13) * (-12/13) sin(2t) = -120/169
So, sin(2t) = -120/169.
Calculating cos(2t)
Next, we'll calculate cos(2t) using the double-angle identity for cosine: cos(2t) = cos^2(t) - sin^2(t)
We already know that sint = 5/13 and cost = -12/13. Now, we can calculate cos(2t): cos(2t) = (-12/13)^2 - (5/13)^2 cos(2t) = 144/169 - 25/169 cos(2t) = 119/169
So, cos(2t) = 119/169.
Calculating tan(2t) and cot(2t)
Finally, we'll calculate tan(2t) and cot(2t) using the identities: tan(2t) = (2tan(t))/(1 - tan^2(t)) cot(2t) = (cot^2(t) - 1)/(2cot(t))
We already know that sint = 5/13 and cost = -12/13. Using these values, we can calculate tan(2t) and cot(2t).
Let's calculate tan(2t): tan(2t) = (2 * (5/13))/ (1 - (5/13)^2) tan(2t) = (10/13)/(1 - 25/169) tan(2t) = (10/13)/(144/169) tan(2t) = (10/13) * (169/144) tan(2t) = 1690/1872
So, tan(2t) = 1690/1872.
Now, let's calculate cot(2t): cot(2t) = ((5/13)^2 - 1)/(2 * (5/13)) cot(2t) = (25/169 - 1)/(10/13) cot(2t) = (-144/169)/(10/13) cot(2t) = -144/130 cot(2t) = -72/65
So, cot(2t) = -72/65.
Conclusion
In conclusion, for the given values of sint = 5/13 and t ∈ (π/2, π), the calculated values are: - sin(2t) = -120/169 - cos(2t) = 119/169 - **tan(2t) =


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili