
Вопрос задан 17.04.2019 в 18:32.
Предмет Алгебра.
Спрашивает Алхимова Ксения.
Докажите, что всякое простое число, начиная с 5, увеличенное или уменьшенное на 1, делится на 6.


Ответы на вопрос

Отвечает Соловьёв Ваня.
6 = 3 • 2 - для того чтобы число делилось на 6 необходимо и достаточно чтобы число делилось на 2 и на 3.
два - единственное простое чётное число, а так как мы рассматриваем простые числа, начиная с 5, то все рассматриваемые простые числа являются нечётными. Прибавление или вычитание единицы изменяет чётность. Поэтому всякое простое число, начиная с 5, увеличенное или уменьшенное на 1, делиться на 2. Так как исходное число простое, начиная с пяти, значит оно не делиться на 3, обозначим его переменной х. Очевидно, что х минус 1 либо х плюс 1 делиться на 3, так как точно одно из 3 последовательный чисел делиться на 3.
два - единственное простое чётное число, а так как мы рассматриваем простые числа, начиная с 5, то все рассматриваемые простые числа являются нечётными. Прибавление или вычитание единицы изменяет чётность. Поэтому всякое простое число, начиная с 5, увеличенное или уменьшенное на 1, делиться на 2. Так как исходное число простое, начиная с пяти, значит оно не делиться на 3, обозначим его переменной х. Очевидно, что х минус 1 либо х плюс 1 делиться на 3, так как точно одно из 3 последовательный чисел делиться на 3.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili