
Вопрос задан 06.05.2018 в 16:37.
Предмет Алгебра.
Спрашивает Попова Ксения.
Первый и второй насосы наполняют бассейн за 6 минут, второй и третий — за 7 минут, а
первый и третий — за 21 минуту. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Ответы на вопрос

Отвечает Григорьева Дарья.
Решение
Пусть производительность равна 1, тогда производительность
первого насоса равна 1/x,
второго насоса равна 1/y,
третьего насоса равна 1/z
Тогда :
6*(1/x + 1/y) = 1;
7*(1/y + 1/z) = 1
21*(1/x + 1/y) =1.
или
1/x + 1/y = 1/6
1/y + 1/z 1/7
1/x + 1/z) = 1/21
Сложим эти три уравнения:
(2/x + 2/y + 2/z) = 1/6 + 1/7 + 1/21 ;
(1/x + 1/y +1/z) = (1/6 + 1/7 + 1/21) / 2
(1/x + 1/y + 1/z) = (15/42)/2
Теперь находим обратное отношение:
1/((15/42)/2) = 84/15 = 5,6 мин
За 5,6 минут три насоса заполнят бассейн, работая вместе.
Ответ: за 5,6 минут


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili