Вопрос задан 25.03.2019 в 05:30. Предмет Алгебра. Спрашивает Кузнецов Роман.

1. Какая из функций является квадратичной a) y = 3x - x^2 В) у = -3x+ 5 b) y= 2x^2 + x^3 г) y =

5/x^2 - x ? 2. Найдите нули функции a) y= x^2 - 6x + 8; b) y=2x^2 + 6x; в) y = -2x^2 + 3x + 5
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куфель Роман.
1) Квадратичная функция имеет вид ах² + bx + c, поэтому подходит ответ под буквой а) y = 3x - x²
2) Нулями функции называются такие значения х, при которых значение функции (т. е. y) равно нулю
а) у = х² - 6х + 8 = 0
Решим квадратное уравнение через дискриминант.
x = 2
x = 4
Это и есть нули функции
б) y = 2x² + 6x
Вынесем общий множитель
2х(х + 6) = 0
Произведение равно нулю, когда хотя бы один из множителей равен нулю.
2х = 0
х + 6 = 0
х = 0
х = -6
в) у = -2х² + 3х + 5 = 0
Домножим на -1, чтобы избавиться от минуса перед иксом
2х² - 3х - 5 = 0
Решаем через дискриминант:
x = 1
x = 
\frac{5}{2}




0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос