
Вопрос задан 06.03.2019 в 19:39.
Предмет Алгебра.
Спрашивает Иванова Алиса.
Решить уравнение 25*sin(x)cos(x)-sin(x)-cos(x)=5


Ответы на вопрос

Отвечает Кашина Маша.
Task/25521524
---------------------
Решить уравнение
25*sin(x)cos(x)-sin(x)-cos(x)=5 ;
25*( ( sin(x) +cos(x) )² - 1) /2 - ( sin(x) +cos(x) =5 ;
замена: t = sin(x) +cos(x) = √2cos(x -π/4) ; -√2 ≤ √2cos(x -π/4) ≤ √2
25(t² -1)/2 - t =5 ;
25t² -2t -35 =0 ; D₁ =(2/2)² - 25*(-35) =1 +875 =876 =(2√219)²
t₁ = (1 -2√219) / 25 ;
t₂ = (1+2√219) / 25 .
* * * t₁ и t₂ ∈ [ - √2 ; √2] * * *
a)
√2cos(x -π/4) = (1 -2√219) / 25 ;
cos(x -π/4) = √2(1 -2√219) / 50
x -π/4 = ± arccos (√2(1 -2√219) / 50) +2πn , n ∈ Z .
x = π/ 4 ± arccos (√2(1 -2√219) / 50) +2πn , n ∈ Z .
б)
√2cos(x -π/4) = (1 +2√219) / 25;
x = π/ 4 ± arccos (√2(1 +2√219) / 50) +2πn , n ∈ Z .√2
---------------------
Решить уравнение
25*sin(x)cos(x)-sin(x)-cos(x)=5 ;
25*( ( sin(x) +cos(x) )² - 1) /2 - ( sin(x) +cos(x) =5 ;
замена: t = sin(x) +cos(x) = √2cos(x -π/4) ; -√2 ≤ √2cos(x -π/4) ≤ √2
25(t² -1)/2 - t =5 ;
25t² -2t -35 =0 ; D₁ =(2/2)² - 25*(-35) =1 +875 =876 =(2√219)²
t₁ = (1 -2√219) / 25 ;
t₂ = (1+2√219) / 25 .
* * * t₁ и t₂ ∈ [ - √2 ; √2] * * *
a)
√2cos(x -π/4) = (1 -2√219) / 25 ;
cos(x -π/4) = √2(1 -2√219) / 50
x -π/4 = ± arccos (√2(1 -2√219) / 50) +2πn , n ∈ Z .
x = π/ 4 ± arccos (√2(1 -2√219) / 50) +2πn , n ∈ Z .
б)
√2cos(x -π/4) = (1 +2√219) / 25;
x = π/ 4 ± arccos (√2(1 +2√219) / 50) +2πn , n ∈ Z .√2



Отвечает Федів Антон.
Введём замену
Возвращаемся к обратной замене


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili