Вопрос задан 01.05.2018 в 13:58. Предмет Алгебра. Спрашивает Лис Лера.

Помогите пожалуйста доказать неравенство a2 + b2 – 16a + 14b + 114 > 0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Григорьева Дарья.

A² + b² - 16a + 14b + 114 > 0
a² - 16a + b² + 14b + 114 > 0
Выделим полные квадраты
a² - 16a + 64 - 64 + b² + 14b + 49 - 49 + 114 > 0
(a - 8)² + (b + 7)² - 113 + 114 > 0
(a - 8)² + (b + 7)² > -1
Сумма двух квадратов будет принимать неотрицательные значения, значит, неравенство верно при любых a и b.

0 0
Отвечает Терентьев Никита.

a2 + b2 – 16a + 14b + 114 > 0
(a
²-16a+64)-64+(b²+14b+49)-49+114>0
(a-8)²+(b+7)²+1>0
(a-8)≥0 ,(b+7)≥0,1>0⇒(a-8)²+(b+7)²+1>0 при любом a и b

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос