
B1.Найдите sin a, если cos a=5/12 и p


Ответы на вопрос




I found some web search results that might help you with your question. Here is a summary of what I learned:
- To find the value of sin a, you need to use the Pythagorean identity: sin² a + cos² a = 1 . This means that if you know the value of cos a, you can find the value of sin a by solving for it in the equation. - In your case, cos a = 5/12, so you can plug this value into the equation and get: sin² a + (5/12)² = 1. Simplifying, you get: sin² a = 1 - 25/144 = 119/144. Taking the square root of both sides, you get: sin a = ±√(119/144) = ±√119/12. - However, this is not the final answer, because you also need to consider the quadrant where the angle a is located. Since you are given that p < a, this means that a is greater than pi radians or 180 degrees. This implies that a is either in the third or fourth quadrant, where cos a is negative . - Since cos a = 5/12 is positive, this contradicts the condition that p < a. Therefore, there is no solution for sin a in this case. You might want to check if you typed the question correctly, or if there is a typo in the original source.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili