
Какое из данных чисел √8,1 √810 √8100 является рациональным ???


Ответы на вопрос




Rationality of Square Roots
To determine which of the given numbers √8.1, √810, and √8100 is rational, we need to understand the concept of rational numbers and how they relate to square roots.
A rational number is a number that can be expressed as the quotient or fraction of two integers, where the denominator is not zero. In other words, a rational number can be written in the form a/b, where a and b are integers and b is not zero.
The square root of a number is a value that, when multiplied by itself, gives the original number. For example, the square root of 9 is 3 because 3 * 3 = 9.
Now, let's examine each of the given numbers to determine if their square roots are rational.
1. √8.1: The square root of 8.1 is approximately 2.8460498941515415. Since this number is not an exact integer or a fraction, it is an irrational number. Therefore, √8.1 is not rational.
2. √810: The square root of 810 is exactly 30. Since 30 is an integer, it can be expressed as the fraction 30/1. Therefore, √810 is rational.
3. √8100: The square root of 8100 is exactly 90. Since 90 is an integer, it can be expressed as the fraction 90/1. Therefore, √8100 is rational.
Based on the analysis above, we can conclude that √810 and √8100 are rational numbers, while √8.1 is an irrational number.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili