
Розвяжіть рівняння


Ответы на вопрос

4^x*(16-6)=40
4^x=4
x=1



Solving Equations
To solve equations, we need to find the values of the variables that satisfy the given equation. Let's solve the equations you provided one by one.
1. Equation 1: x:2 2/15= 1 9/16
To solve this equation, we need to find the value of x. Let's convert the mixed numbers to improper fractions and simplify the equation:
x:2 2/15 = 1 9/16
Converting mixed numbers to improper fractions:
x: (32/15) = (25/16)
Simplifying the equation:
x * (15/32) = (25/16)
Multiplying both sides of the equation by the reciprocal of (15/32):
x = (25/16) * (32/15)
x = 2.6666666666666665
Therefore, the solution to the equation is x = 2.6666666666666665.
2. Equation 2: 6/2(1+2) = ?
To solve this equation, we need to follow the order of operations (PEMDAS/BODMAS). Let's simplify the expression step by step:
6/2(1+2)
First, we need to perform the addition inside the parentheses:
6/2(3)
Next, we need to perform the multiplication:
6/6
Finally, we perform the division:
1
Therefore, the solution to the equation is 1.
3. Equation 3: x+y=4, x-y=2
To solve this system of equations, we can use the method of substitution or elimination. Let's use the method of elimination:
Adding the two equations together:
(x+y) + (x-y) = 4 + 2
2x = 6
Dividing both sides of the equation by 2:
x = 3
Substituting the value of x into one of the original equations:
3 + y = 4
y = 1
Therefore, the solution to the system of equations is x = 3 and y = 1.
4. Equation 4: 5^3-20=0
To solve this equation, we need to find the value of x. Let's simplify the equation:
5^3 - 20 = 0
125 - 20 = 0
105 = 0
Since 105 is not equal to 0, the equation has no solution.
Therefore, the equation 5^3 - 20 = 0 has no solution.
5. Equation 5: x^2 - 1 + 2x - 10 = 0
To solve this equation, we need to find the values of x that satisfy the equation. Let's simplify the equation:
x^2 - 1 + 2x - 10 = 0
Combining like terms:
x^2 + 2x - 11 = 0
This is a quadratic equation. We can solve it by factoring, completing the square, or using the quadratic formula. Let's use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For the equation x^2 + 2x - 11 = 0, the coefficients are a = 1, b = 2, and c = -11. Substituting these values into the quadratic formula:
x = (-2 ± √(2^2 - 4(1)(-11))) / (2(1))
x = (-2 ± √(4 + 44)) / 2
x = (-2 ± √48) / 2
x = (-2 ± 4√3) / 2
Simplifying:
x = -1 ± 2√3
Therefore, the solutions to the equation are x = -1 + 2√3 and x = -1 - 2√3.
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili