Вопрос задан 23.02.2019 в 04:27. Предмет Алгебра. Спрашивает Гребнев Андрей.

Розвяжіть рівняння

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Самойлович Илья.
Выносим за скобку 4^x
4^x*(16-6)=40
4^x=4
x=1
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving Equations

To solve equations, we need to find the values of the variables that satisfy the given equation. Let's solve the equations you provided one by one.

1. Equation 1: x:2 2/15= 1 9/16

To solve this equation, we need to find the value of x. Let's convert the mixed numbers to improper fractions and simplify the equation:

x:2 2/15 = 1 9/16

Converting mixed numbers to improper fractions:

x: (32/15) = (25/16)

Simplifying the equation:

x * (15/32) = (25/16)

Multiplying both sides of the equation by the reciprocal of (15/32):

x = (25/16) * (32/15)

x = 2.6666666666666665

Therefore, the solution to the equation is x = 2.6666666666666665.

2. Equation 2: 6/2(1+2) = ?

To solve this equation, we need to follow the order of operations (PEMDAS/BODMAS). Let's simplify the expression step by step:

6/2(1+2)

First, we need to perform the addition inside the parentheses:

6/2(3)

Next, we need to perform the multiplication:

6/6

Finally, we perform the division:

1

Therefore, the solution to the equation is 1.

3. Equation 3: x+y=4, x-y=2

To solve this system of equations, we can use the method of substitution or elimination. Let's use the method of elimination:

Adding the two equations together:

(x+y) + (x-y) = 4 + 2

2x = 6

Dividing both sides of the equation by 2:

x = 3

Substituting the value of x into one of the original equations:

3 + y = 4

y = 1

Therefore, the solution to the system of equations is x = 3 and y = 1.

4. Equation 4: 5^3-20=0

To solve this equation, we need to find the value of x. Let's simplify the equation:

5^3 - 20 = 0

125 - 20 = 0

105 = 0

Since 105 is not equal to 0, the equation has no solution.

Therefore, the equation 5^3 - 20 = 0 has no solution.

5. Equation 5: x^2 - 1 + 2x - 10 = 0

To solve this equation, we need to find the values of x that satisfy the equation. Let's simplify the equation:

x^2 - 1 + 2x - 10 = 0

Combining like terms:

x^2 + 2x - 11 = 0

This is a quadratic equation. We can solve it by factoring, completing the square, or using the quadratic formula. Let's use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

For the equation x^2 + 2x - 11 = 0, the coefficients are a = 1, b = 2, and c = -11. Substituting these values into the quadratic formula:

x = (-2 ± √(2^2 - 4(1)(-11))) / (2(1))

x = (-2 ± √(4 + 44)) / 2

x = (-2 ± √48) / 2

x = (-2 ± 4√3) / 2

Simplifying:

x = -1 ± 2√3

Therefore, the solutions to the equation are x = -1 + 2√3 and x = -1 - 2√3.

Please let me know if there's anything else I can help you with!

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос