
Исследуйте на экстремум функцию:


Ответы на вопрос

y'=x^3-6x^2+11x-6
y'=0



Finding the Extremum of a Function
To find the extremum of a function, we need to determine the critical points where the derivative of the function is equal to zero or does not exist. Let's explore the given function:
Function: Z = 8x^2 + 2xy - 5x + 6
To find the extremum of this function, we need to find the critical points by taking the partial derivatives with respect to x and y and setting them equal to zero.
Taking the partial derivative with respect to x:
∂Z/∂x = 16x + 2y - 5 = 0 Taking the partial derivative with respect to y:
∂Z/∂y = 2x = 0 Solving these equations simultaneously, we get:
16x + 2y - 5 = 0 (Equation 1) 2x = 0 (Equation 2)
From Equation 2, we find that x = 0. Substituting this value into Equation 1, we can solve for y:
16(0) + 2y - 5 = 0 2y = 5 y = 5/2
Therefore, the critical point is (x, y) = (0, 5/2).
To determine if this critical point is a maximum or minimum, we need to analyze the second-order partial derivatives. Taking the second partial derivatives:
∂^2Z/∂x^2 = 16 ∂^2Z/∂y^2 = 0 ∂^2Z/∂x∂y = 2 Using the second partial derivatives, we can calculate the discriminant:
D = (∂^2Z/∂x^2)(∂^2Z/∂y^2) - (∂^2Z/∂x∂y)^2 = (16)(0) - (2)^2 = -4
Since the discriminant is negative, we can conclude that the critical point (0, 5/2) is a saddle point.
Therefore, the function Z = 8x^2 + 2xy - 5x + 6 has a saddle point at (0, 5/2).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili