
1. (4+a)в квадрате 2. (2x(в 4 степени)-3) в квадрате 3. (3b+2a) в квадрате 4. -3*(2-х) в
квадрате+18 5. (2y+y)в кубе 6. (5+у)в квадрате+у(у-7) 7. 9bв квадрате-(а-3b) в квадрате Подробнее решение. Срочно. Заранее спасибо

Ответы на вопрос

2. = (2x^4)³-2×2x^4×3+3² = 4x^8 -12x^4+9
3. = (3(3b+2a))² = (9b+6a)² = 81b²+108ab+36a²
4. = -3((2-x)²-6) = -3(4-4x+x²-6) = -3(-2-4x+x²)
5. = (3y)³ = 27y³
6. = 25+10y+y²+y²-7y = 25+3y+2y²
7. = (3b-(a-3b))×(3b+a-3b) = (3b-a+3b)a = (6b-a)a



1. (4+a) в квадрате
To find the square of (4+a), we can use the formula for squaring a binomial:
The square of a binomial (a+b) is equal to a^2 + 2ab + b^2.
In this case, a = 4 and b = a. Substituting these values into the formula, we get:
(4+a)^2 = 4^2 + 2 * 4 * a + a^2
Simplifying further:
(4+a)^2 = 16 + 8a + a^2
Therefore, (4+a) squared is equal to 16 + 8a + a^2.
2. (2x(в+4+степени)-3) в квадрате
To find the square of (2x(в+4+степени)-3), we can follow a similar process as in the previous question.
Let's break down the expression step by step:
Step 1: Simplify the expression inside the parentheses.
(в+4+степени) can be simplified as в^2 + 4в + степени^2.
Step 2: Substitute the simplified expression back into the original expression.
2x(в+4+степени)-3 becomes 2x(в^2 + 4в + степени^2)-3.
Step 3: Apply the formula for squaring a binomial.
Using the formula for squaring a binomial, we can expand the expression:
(2x(в^2 + 4в + степени^2)-3)^2 = (2x)^2 + 2 * (2x) * (в^2 + 4в + степени^2) + (в^2 + 4в + степени^2)^2
Simplifying further:
(2x(в^2 + 4в + степени^2)-3)^2 = 4x^2 + 4x(в^2 + 4в + степени^2) + (в^2 + 4в + степени^2)^2
Therefore, (2x(в+4+степени)-3) squared is equal to 4x^2 + 4x(в^2 + 4в + степени^2) + (в^2 + 4в + степени^2)^2.
3. (3b+2a) в квадрате
To find the square of (3b+2a), we can use the formula for squaring a binomial.
Using the formula, we have:
(3b+2a)^2 = (3b)^2 + 2 * (3b) * (2a) + (2a)^2
Simplifying further:
(3b+2a)^2 = 9b^2 + 12ab + 4a^2
Therefore, (3b+2a) squared is equal to 9b^2 + 12ab + 4a^2.
4. -3*(2-х) в квадрате
To find the square of -3*(2-х), we can follow a similar process as in the previous questions.
Let's break down the expression step by step:
Step 1: Simplify the expression inside the parentheses.
(2-х) can be simplified as 2 - х.
Step 2: Substitute the simplified expression back into the original expression.
-3*(2-х) becomes -3*(2 - х).
Step 3: Apply the formula for squaring a binomial.
Using the formula for squaring a binomial, we can expand the expression:
(-3*(2 - х))^2 = (-3)^2 + 2 * (-3) * (2 - х) + (2 - х)^2
Simplifying further:
(-3*(2 - х))^2 = 9 + 2 * (-3) * (2 - х) + (2 - х)^2
Therefore, -3*(2-х) squared is equal to 9 + 2 * (-3) * (2 - х) + (2 - х)^2.
5. (2y+y) в кубе
To find the cube of (2y+y), we can use the formula for cubing a binomial.
Using the formula, we have:
(2y+y)^3 = (2y)^3 + 3 * (2y)^2 * y + 3 * (2y) * y^2 + y^3
Simplifying further:
(2y+y)^3 = 8y^3 + 12y^2 * y + 6y * y^2 + y^3
Therefore, (2y+y) cubed is equal to 8y^3 + 12y^2 * y + 6y * y^2 + y^3.
6. (5+у) в квадрате у(у-7)
To find the square of (5+у) and multiply it by у(у-7), we can break down the expression step by step.
Step 1: Find the square of (5+у).
Using the formula for squaring a binomial, we have:
(5+у)^2 = 5^2 + 2 * 5 * у + у^2
Simplifying further:
(5+у)^2 = 25 + 10у + у^2
Step 2: Multiply the result from Step 1 by у(у-7).
(25 + 10у + у^2) * у(у-7) = у(у-7) * 25 + у(у-7) * 10у + у(у-7) * у^2
Simplifying further:
(25 + 10у + у^2) * у(у-7) = 25у(у-7) + 10у^2(у-7) + у^3(у-7)
Therefore, (5+у) squared multiplied by у(у-7) is equal to 25у(у-7) + 10у^2(у-7) + у^3(у-7).
7. 9b в квадрате - (а-3b) в квадрате
To find the difference between the square of 9b and the square of (а-3b), we can follow a similar process as in the previous questions.
Let's break down the expression step by step:
Step 1: Find the square of 9b.
Using the formula for squaring a binomial, we have:
(9b)^2 = 9^2 * b^2 = 81b^2
Step 2: Find the square of (а-3b).
Using the formula for squaring a binomial, we have:
(а-3b)^2 = а^2 - 2 * а * 3b + (3b)^2 = а^2 - 6ab + 9b^2
Step 3: Find the difference between the square of 9b and the square of (а-3b).
81b^2 - (а^2 - 6ab + 9b^2) = 81b^2 - а^2 + 6ab - 9b^2
Therefore, the difference between the square of 9b and the square of (а-3b) is equal to 81b^2 - а^2 + 6ab - 9b^2.
Note: The sources provided do not contain specific information related to the given expressions. The solutions provided are based on mathematical principles and formulas.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili