Вопрос задан 20.02.2019 в 23:01. Предмет Алгебра. Спрашивает Смирнов Евгений.

1. (4+a)в квадрате 2. (2x(в 4 степени)-3) в квадрате 3. (3b+2a) в квадрате 4. -3*(2-х) в

квадрате+18 5. (2y+y)в кубе 6. (5+у)в квадрате+у(у-7) 7. 9bв квадрате-(а-3b) в квадрате Подробнее решение. Срочно. Заранее спасибо
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Скидан Златик.
1. = 4²+2×4a+a² = 16+8a+a²
2. = (2x^4)³-2×2x^4×3+3² = 4x^8 -12x^4+9
3. = (3(3b+2a))² = (9b+6a)² = 81b²+108ab+36a²
4. = -3((2-x)²-6) = -3(4-4x+x²-6) = -3(-2-4x+x²)
5. = (3y)³ = 27y³
6. = 25+10y+y²+y²-7y = 25+3y+2y²
7. = (3b-(a-3b))×(3b+a-3b) = (3b-a+3b)a = (6b-a)a
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1. (4+a) в квадрате

To find the square of (4+a), we can use the formula for squaring a binomial:

The square of a binomial (a+b) is equal to a^2 + 2ab + b^2.

In this case, a = 4 and b = a. Substituting these values into the formula, we get:

(4+a)^2 = 4^2 + 2 * 4 * a + a^2

Simplifying further:

(4+a)^2 = 16 + 8a + a^2

Therefore, (4+a) squared is equal to 16 + 8a + a^2.

2. (2x(в+4+степени)-3) в квадрате

To find the square of (2x(в+4+степени)-3), we can follow a similar process as in the previous question.

Let's break down the expression step by step:

Step 1: Simplify the expression inside the parentheses.

(в+4+степени) can be simplified as в^2 + 4в + степени^2.

Step 2: Substitute the simplified expression back into the original expression.

2x(в+4+степени)-3 becomes 2x(в^2 + 4в + степени^2)-3.

Step 3: Apply the formula for squaring a binomial.

Using the formula for squaring a binomial, we can expand the expression:

(2x(в^2 + 4в + степени^2)-3)^2 = (2x)^2 + 2 * (2x) * (в^2 + 4в + степени^2) + (в^2 + 4в + степени^2)^2

Simplifying further:

(2x(в^2 + 4в + степени^2)-3)^2 = 4x^2 + 4x(в^2 + 4в + степени^2) + (в^2 + 4в + степени^2)^2

Therefore, (2x(в+4+степени)-3) squared is equal to 4x^2 + 4x(в^2 + 4в + степени^2) + (в^2 + 4в + степени^2)^2.

3. (3b+2a) в квадрате

To find the square of (3b+2a), we can use the formula for squaring a binomial.

Using the formula, we have:

(3b+2a)^2 = (3b)^2 + 2 * (3b) * (2a) + (2a)^2

Simplifying further:

(3b+2a)^2 = 9b^2 + 12ab + 4a^2

Therefore, (3b+2a) squared is equal to 9b^2 + 12ab + 4a^2.

4. -3*(2-х) в квадрате

To find the square of -3*(2-х), we can follow a similar process as in the previous questions.

Let's break down the expression step by step:

Step 1: Simplify the expression inside the parentheses.

(2-х) can be simplified as 2 - х.

Step 2: Substitute the simplified expression back into the original expression.

-3*(2-х) becomes -3*(2 - х).

Step 3: Apply the formula for squaring a binomial.

Using the formula for squaring a binomial, we can expand the expression:

(-3*(2 - х))^2 = (-3)^2 + 2 * (-3) * (2 - х) + (2 - х)^2

Simplifying further:

(-3*(2 - х))^2 = 9 + 2 * (-3) * (2 - х) + (2 - х)^2

Therefore, -3*(2-х) squared is equal to 9 + 2 * (-3) * (2 - х) + (2 - х)^2.

5. (2y+y) в кубе

To find the cube of (2y+y), we can use the formula for cubing a binomial.

Using the formula, we have:

(2y+y)^3 = (2y)^3 + 3 * (2y)^2 * y + 3 * (2y) * y^2 + y^3

Simplifying further:

(2y+y)^3 = 8y^3 + 12y^2 * y + 6y * y^2 + y^3

Therefore, (2y+y) cubed is equal to 8y^3 + 12y^2 * y + 6y * y^2 + y^3.

6. (5+у) в квадрате у(у-7)

To find the square of (5+у) and multiply it by у(у-7), we can break down the expression step by step.

Step 1: Find the square of (5+у).

Using the formula for squaring a binomial, we have:

(5+у)^2 = 5^2 + 2 * 5 * у + у^2

Simplifying further:

(5+у)^2 = 25 + 10у + у^2

Step 2: Multiply the result from Step 1 by у(у-7).

(25 + 10у + у^2) * у(у-7) = у(у-7) * 25 + у(у-7) * 10у + у(у-7) * у^2

Simplifying further:

(25 + 10у + у^2) * у(у-7) = 25у(у-7) + 10у^2(у-7) + у^3(у-7)

Therefore, (5+у) squared multiplied by у(у-7) is equal to 25у(у-7) + 10у^2(у-7) + у^3(у-7).

7. 9b в квадрате - (а-3b) в квадрате

To find the difference between the square of 9b and the square of (а-3b), we can follow a similar process as in the previous questions.

Let's break down the expression step by step:

Step 1: Find the square of 9b.

Using the formula for squaring a binomial, we have:

(9b)^2 = 9^2 * b^2 = 81b^2

Step 2: Find the square of (а-3b).

Using the formula for squaring a binomial, we have:

(а-3b)^2 = а^2 - 2 * а * 3b + (3b)^2 = а^2 - 6ab + 9b^2

Step 3: Find the difference between the square of 9b and the square of (а-3b).

81b^2 - (а^2 - 6ab + 9b^2) = 81b^2 - а^2 + 6ab - 9b^2

Therefore, the difference between the square of 9b and the square of (а-3b) is equal to 81b^2 - а^2 + 6ab - 9b^2.

Note: The sources provided do not contain specific information related to the given expressions. The solutions provided are based on mathematical principles and formulas.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос