
В окружности,диаметр которой равен 50 проведена хорда ,такая,что от центра до хорды равно 15
найдите длину хорды

Ответы на вопрос

ответ 40 см



Calculating the Length of the Chord in a Circle
To find the length of the chord in a circle when the diameter is 50 and the distance from the center to the chord is 15, we can use the following approach:
1. Use the Pythagorean Theorem: We can use the Pythagorean theorem to find the length of the chord. The Pythagorean theorem states that in a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.
2. Apply the Theorem: In this case, the diameter of the circle is the hypotenuse, and the distance from the center to the chord and half the length of the chord form the other two sides of the right-angled triangle.
Using the Pythagorean theorem, we can calculate the length of the chord.
Calculation
Let's denote: - The diameter of the circle as d (given as 50). - The distance from the center to the chord as r (given as 15). - The length of the chord as c (what we need to find).
According to the Pythagorean theorem: d^2 = (2r)^2 + c^2
Substitute the given values: 50^2 = (2*15)^2 + c^2
Solving for c: c^2 = 50^2 - (2*15)^2 c = √(50^2 - (2*15)^2)
Result
By solving the above equation, we find the length of the chord to be approximately 40.31.
Therefore, the length of the chord in the circle is approximately 40.31 units.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili